Waveband Selection Based Feature Extraction Using Genetic Algorithm

Yujun Li, Kun Liang, Xiaojun Tang, Keke Gai
{"title":"Waveband Selection Based Feature Extraction Using Genetic Algorithm","authors":"Yujun Li, Kun Liang, Xiaojun Tang, Keke Gai","doi":"10.1109/CSCloud.2017.31","DOIUrl":null,"url":null,"abstract":"In order to explain the geological structure accurately and quickly, we analyze the gas mixture gathered from the well by Infrared Spectroscopy Fourier Transform Spectrometer instead of gas chromatograph. In the process of the spectrum analysis, the reduction of the spectrum data dimention is very neccessary to perform. In this paper, we propose a feature extraction method is based on waveband selections using genetic algorithm, which is named FEWSGA. This approach can directly selecte eigenvalues from the limited waveband spectrum data instead of using mathematical transformation, such as the PCA (principal component analysis) and PLS (partial least squares) algorithm. Experiments results show that our method can reduce the spectrum data dimention from 1866 to 317, and the mean relative error (MRE) of the analysis model decrease from 34.68% to 26.59%. Moreover, the feature extraction from the whole waveband spectrum data using GA only reduce the data dimention from 1866 to 937. The MRE of the analysis model only reduces from 34.68% to 32.97%. Our approach has a better performance.","PeriodicalId":436299,"journal":{"name":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2017.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to explain the geological structure accurately and quickly, we analyze the gas mixture gathered from the well by Infrared Spectroscopy Fourier Transform Spectrometer instead of gas chromatograph. In the process of the spectrum analysis, the reduction of the spectrum data dimention is very neccessary to perform. In this paper, we propose a feature extraction method is based on waveband selections using genetic algorithm, which is named FEWSGA. This approach can directly selecte eigenvalues from the limited waveband spectrum data instead of using mathematical transformation, such as the PCA (principal component analysis) and PLS (partial least squares) algorithm. Experiments results show that our method can reduce the spectrum data dimention from 1866 to 317, and the mean relative error (MRE) of the analysis model decrease from 34.68% to 26.59%. Moreover, the feature extraction from the whole waveband spectrum data using GA only reduce the data dimention from 1866 to 937. The MRE of the analysis model only reduces from 34.68% to 32.97%. Our approach has a better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于波段选择的遗传算法特征提取
为了准确、快速地解释地质构造,我们用红外光谱傅立叶变换光谱仪代替气相色谱仪对井中采集的混合气体进行分析。在频谱分析过程中,对频谱数据进行降维是非常必要的。本文提出了一种基于遗传算法的波段选择特征提取方法,并将其命名为FEWSGA。该方法可以直接从有限的波段频谱数据中选择特征值,而不是使用数学变换,如PCA(主成分分析)和PLS(偏最小二乘)算法。实验结果表明,该方法可将光谱数据维数从1866降至317,分析模型的平均相对误差(MRE)从34.68%降至26.59%。此外,利用遗传算法对全波段频谱数据进行特征提取时,数据维数仅从1866降至937。分析模型的MRE仅从34.68%下降到32.97%。我们的方法有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for the Information Classification in ISO 27005 Standard Finding the Best Box-Cox Transformation in Big Data with Meta-Model Learning: A Case Study on QCT Developer Cloud Distributed Shuffle Index in the Cloud: Implementation and Evaluation Performance Study of Ceph Storage with Intel Cache Acceleration Software: Decoupling Hadoop MapReduce and HDFS over Ceph Storage Advanced Fully Homomorphic Encryption Scheme Over Real Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1