Violence Detection Using One-Dimensional Convolutional Networks

Narges Honarjoo, Ali Abdari, Azadeh Mansouri
{"title":"Violence Detection Using One-Dimensional Convolutional Networks","authors":"Narges Honarjoo, Ali Abdari, Azadeh Mansouri","doi":"10.1109/IKT54664.2021.9685835","DOIUrl":null,"url":null,"abstract":"Violence detection in surveillance video processing is a useful capability helping discover abnormal events in a variety of places. Utilizing methods considering the accuracy and complexity simultaneously can provide systems suitable for real-time applications. In this paper, the traditional approach of extracting temporal features has been investigated, while by exploiting one-dimensional convolutional networks, a new approach is proposed, which extracts these features across consecutive frames properly. This low-complexity convolutional-based approach represents a series of frames with a robust feature vector, which can be applied for real-time applications. The experimental results on Hockey, ViolentFlow reveal the efficiency of this proposed method.","PeriodicalId":274571,"journal":{"name":"2021 12th International Conference on Information and Knowledge Technology (IKT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT54664.2021.9685835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Violence detection in surveillance video processing is a useful capability helping discover abnormal events in a variety of places. Utilizing methods considering the accuracy and complexity simultaneously can provide systems suitable for real-time applications. In this paper, the traditional approach of extracting temporal features has been investigated, while by exploiting one-dimensional convolutional networks, a new approach is proposed, which extracts these features across consecutive frames properly. This low-complexity convolutional-based approach represents a series of frames with a robust feature vector, which can be applied for real-time applications. The experimental results on Hockey, ViolentFlow reveal the efficiency of this proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一维卷积网络的暴力检测
在监控视频处理中,暴力检测是发现各种场所异常事件的一项有用功能。采用同时考虑精度和复杂性的方法可以提供适合实时应用的系统。本文在研究传统的时间特征提取方法的基础上,利用一维卷积网络,提出了一种跨连续帧提取时间特征的新方法。这种基于低复杂度卷积的方法代表了一系列具有鲁棒特征向量的帧,可以应用于实时应用。在Hockey、ViolentFlow上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart City Standardized Evaluation: Use Case of Mashhad Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT SBST challenges from the perspective of the test techniques User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1