Robust fault and state-space estimation for linear uncertain systems: An RLS approach

F. Gannouni, F. Ben Hmida
{"title":"Robust fault and state-space estimation for linear uncertain systems: An RLS approach","authors":"F. Gannouni, F. Ben Hmida","doi":"10.1109/ICEESA.2013.6578411","DOIUrl":null,"url":null,"abstract":"This paper addresses the robust filtering problem of joint fault and state estimation for uncertain systems from the viewpoint of regularized least-square estimation. The method is based on the assumption that no prior knowledge about the dynamical evolution of the fault is available. Compared with earlier studies the robust criterion for least-square designs incorporate simultaneously both regularization and weighting and applies to a large class of uncertainties. The solution to the regularized least-square problem yields robust filter equations that perform regularization as opposed to de-regularization. The proposed filter is tested by an illustrative example.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the robust filtering problem of joint fault and state estimation for uncertain systems from the viewpoint of regularized least-square estimation. The method is based on the assumption that no prior knowledge about the dynamical evolution of the fault is available. Compared with earlier studies the robust criterion for least-square designs incorporate simultaneously both regularization and weighting and applies to a large class of uncertainties. The solution to the regularized least-square problem yields robust filter equations that perform regularization as opposed to de-regularization. The proposed filter is tested by an illustrative example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性不确定系统鲁棒故障和状态空间估计:一种RLS方法
从正则化最小二乘估计的角度出发,研究了不确定系统联合故障和状态估计的鲁棒滤波问题。该方法是基于假设没有关于故障动态演化的先验知识。与早期的研究相比,最小二乘设计的鲁棒准则同时包含正则化和加权,并适用于大类别的不确定性。正则化最小二乘问题的解决方案产生执行正则化而不是反正则化的鲁棒滤波方程。通过实例验证了该滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal expansion of linear system using generalized orthogonal basis Photovoltaic properties of devices using fullerene and copper-phthalocyanine doped with poly(3-hexylthiophène) Simulation of a Tunisian wind farm of Sidi-Daoud using PSAT Adaptive observer approach for actuators multiplicative faults detection and isolation Discrete time sliding mode control of PMSM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1