{"title":"SlimGuard","authors":"Beichen Liu, Pierre Olivier, B. Ravindran","doi":"10.1145/3361525.3361532","DOIUrl":null,"url":null,"abstract":"Attacks on the heap are an increasingly severe threat. State-of-the-art secure dynamic memory allocators can offer protection, however their memory footprint is high, making them suboptimal in many situations. We introduce Slim-Guard, a secure allocator whose design is driven by memory efficiency. Among other features, SlimGuard uses an efficient fine-grain size classes indexing mechanism and implements a novel dynamic canary scheme. It offers a low memory overhead due its size classes optimized for canary usage, its on-demand metadata allocation, and the combination of randomized allocations and over-provisioning into a single memory efficient security feature. SlimGuard protects against widespread heap-related attacks such as overflows, over-reads, double/invalid free, and use-after-free. Evaluation over a wide range of applications shows that it offers a significant reduction in memory consumption compared to the state-of-the-art secure allocator (up to 2x in macro-benchmarks), while offering similar or better security guarantees and good performance.","PeriodicalId":381253,"journal":{"name":"Proceedings of the 20th International Middleware Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3361525.3361532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Attacks on the heap are an increasingly severe threat. State-of-the-art secure dynamic memory allocators can offer protection, however their memory footprint is high, making them suboptimal in many situations. We introduce Slim-Guard, a secure allocator whose design is driven by memory efficiency. Among other features, SlimGuard uses an efficient fine-grain size classes indexing mechanism and implements a novel dynamic canary scheme. It offers a low memory overhead due its size classes optimized for canary usage, its on-demand metadata allocation, and the combination of randomized allocations and over-provisioning into a single memory efficient security feature. SlimGuard protects against widespread heap-related attacks such as overflows, over-reads, double/invalid free, and use-after-free. Evaluation over a wide range of applications shows that it offers a significant reduction in memory consumption compared to the state-of-the-art secure allocator (up to 2x in macro-benchmarks), while offering similar or better security guarantees and good performance.