Automated Macular Disease Detection using Retinal Optical Coherence Tomography images by Fusion of Deep Learning Networks

L. V, A. R, S. G.
{"title":"Automated Macular Disease Detection using Retinal Optical Coherence Tomography images by Fusion of Deep Learning Networks","authors":"L. V, A. R, S. G.","doi":"10.1109/NCC52529.2021.9530171","DOIUrl":null,"url":null,"abstract":"This work proposes a method to improve the automated classification and detection of macular diseases using retinal Optical Coherence Tomography (OCT) images by utilizing the fusion of two pre trained deep learning networks. The concatenation of feature vectors extracted from each of the pre trained deep learning model is performed to obtain a long feature vector of the fused network. The experimental results proved that the fusion of two Deep Convolution Neural Network (DCNN) achieves better classification accuracy compared to the individual DCNN models on the same dataset. The automated retinal OCT image classification can assist the large-scale screening and the diagnosis recommendation for an ophthalmologist.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work proposes a method to improve the automated classification and detection of macular diseases using retinal Optical Coherence Tomography (OCT) images by utilizing the fusion of two pre trained deep learning networks. The concatenation of feature vectors extracted from each of the pre trained deep learning model is performed to obtain a long feature vector of the fused network. The experimental results proved that the fusion of two Deep Convolution Neural Network (DCNN) achieves better classification accuracy compared to the individual DCNN models on the same dataset. The automated retinal OCT image classification can assist the large-scale screening and the diagnosis recommendation for an ophthalmologist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习网络融合的视网膜光学相干断层成像黄斑疾病自动检测
本研究提出了一种利用两个预训练的深度学习网络融合视网膜光学相干断层扫描(OCT)图像来改进黄斑疾病自动分类和检测的方法。对每个预训练的深度学习模型提取的特征向量进行拼接,得到融合网络的长特征向量。实验结果证明,在同一数据集上,两个深度卷积神经网络(DCNN)的融合比单独的DCNN模型具有更好的分类精度。视网膜OCT图像自动分类可以辅助眼科医生进行大规模筛查和诊断推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1