Secure and Energy-Efficient Offloading and Resource Allocation in a NOMA-Based MEC Network

Qun Wang, Han Hu, Haijian Sun, R. Hu
{"title":"Secure and Energy-Efficient Offloading and Resource Allocation in a NOMA-Based MEC Network","authors":"Qun Wang, Han Hu, Haijian Sun, R. Hu","doi":"10.1109/SEC50012.2020.00063","DOIUrl":null,"url":null,"abstract":"Energy efficiency and security are two critical issues for mobile edge computing (MEC) networks. With stochastic task arrivals, time-varying dynamic environment, and passive existing attackers, it is very challenging to offload computation tasks securely and efficiently. In this paper, we study the task offloading and resource allocation problem in a non-orthogonal multiple access (NOMA) assisted MEC network with security and energy efficiency considerations. To tackle the problem, a dynamic secure task offloading and resource allocation algorithm is proposed based on Lyapunov optimization theory. A stochastic non-convex problem is formulated to jointly optimize the local-CPU frequency and transmit power, aiming at maximizing the network energy efficiency, which is defined as the ratio of the long-term average secure rate to the long-term average power consumption of all users. The formulated problem is decomposed into the deterministic sub-problems in each time slot. The optimal local CPU-cycle and the transmit power of each user can be given in the closed-from. Simulation results evaluate the impacts of different parameters on the efficiency metrics and demonstrate that the proposed method can achieve better performance compared with other benchmark methods in terms of energy efficiency.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"751 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Energy efficiency and security are two critical issues for mobile edge computing (MEC) networks. With stochastic task arrivals, time-varying dynamic environment, and passive existing attackers, it is very challenging to offload computation tasks securely and efficiently. In this paper, we study the task offloading and resource allocation problem in a non-orthogonal multiple access (NOMA) assisted MEC network with security and energy efficiency considerations. To tackle the problem, a dynamic secure task offloading and resource allocation algorithm is proposed based on Lyapunov optimization theory. A stochastic non-convex problem is formulated to jointly optimize the local-CPU frequency and transmit power, aiming at maximizing the network energy efficiency, which is defined as the ratio of the long-term average secure rate to the long-term average power consumption of all users. The formulated problem is decomposed into the deterministic sub-problems in each time slot. The optimal local CPU-cycle and the transmit power of each user can be given in the closed-from. Simulation results evaluate the impacts of different parameters on the efficiency metrics and demonstrate that the proposed method can achieve better performance compared with other benchmark methods in terms of energy efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于noma的MEC网络安全节能卸载与资源分配
能源效率和安全性是移动边缘计算(MEC)网络的两个关键问题。由于任务到达是随机的,动态环境是时变的,攻击者是被动存在的,如何安全高效地卸载计算任务是一个很大的挑战。本文研究了基于安全和能效考虑的非正交多址(NOMA)辅助MEC网络中的任务卸载和资源分配问题。针对这一问题,提出了一种基于李亚普诺夫优化理论的动态安全任务卸载和资源分配算法。提出了一个随机非凸问题,共同优化局部cpu频率和发射功率,以最大化网络能量效率为目标,将其定义为所有用户长期平均安全率与长期平均功耗之比。将公式问题分解为每个时隙的确定性子问题。最优的本地cpu周期和每个用户的发射功率可以在闭环中给出。仿真结果评估了不同参数对效率指标的影响,并证明了该方法在能效方面比其他基准方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards a Robust Edge-Native Storage System Exploring Decentralized Collaboration in Heterogeneous Edge Training Message from the Program Co-Chairs FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code Demo: EdgeVPN.io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1