Multi-dimensional Mass Estimation and Mass-based Clustering

K. Ting, Jonathan R. Wells
{"title":"Multi-dimensional Mass Estimation and Mass-based Clustering","authors":"K. Ting, Jonathan R. Wells","doi":"10.1109/ICDM.2010.49","DOIUrl":null,"url":null,"abstract":"Mass estimation, an alternative to density estimation, has been shown recently to be an effective base modelling mechanism for three data mining tasks of regression, information retrieval and anomaly detection. This paper advances this work in two directions. First, we generalise the previously proposed one-dimensional mass estimation to multidimensional mass estimation, and significantly reduce the time complexity to O(ψh) from O(ψh)-making it feasible for a full range of generic problems. Second, we introduce the first clustering method based on mass-it is unique because it does not employ any distance or density measure. The structure of the new mass model enables different parts of a cluster to be identified and merged without expensive evaluations. The characteristics of the new clustering method are: (i) it can identify arbitrary-shape clusters; (ii) it is significantly faster than existing density-based or distance-based methods; and (iii) it is noise-tolerant.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Mass estimation, an alternative to density estimation, has been shown recently to be an effective base modelling mechanism for three data mining tasks of regression, information retrieval and anomaly detection. This paper advances this work in two directions. First, we generalise the previously proposed one-dimensional mass estimation to multidimensional mass estimation, and significantly reduce the time complexity to O(ψh) from O(ψh)-making it feasible for a full range of generic problems. Second, we introduce the first clustering method based on mass-it is unique because it does not employ any distance or density measure. The structure of the new mass model enables different parts of a cluster to be identified and merged without expensive evaluations. The characteristics of the new clustering method are: (i) it can identify arbitrary-shape clusters; (ii) it is significantly faster than existing density-based or distance-based methods; and (iii) it is noise-tolerant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维质量估计和基于质量的聚类
质量估计是密度估计的一种替代方法,近年来已被证明是一种有效的基础建模机制,可用于三种数据挖掘任务:回归、信息检索和异常检测。本文从两个方向推进了这项工作。首先,我们将之前提出的一维质量估计推广到多维质量估计,并将时间复杂度从O(ψh)显著降低到O(ψh),使其适用于所有的一般问题。其次,我们介绍了第一种基于质量的聚类方法,它是独特的,因为它不使用任何距离或密度度量。新质量模型的结构使集群的不同部分能够被识别和合并,而不需要昂贵的评估。新聚类方法的特点是:(1)能够识别任意形状的聚类;(ii)比现有的基于密度或基于距离的方法快得多;(三)耐噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Probabilistic Matrix Factorizations for Collaborative Filtering MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model Finding Local Anomalies in Very High Dimensional Space Efficient Probabilistic Latent Semantic Analysis with Sparsity Control Enhancing Single-Objective Projective Clustering Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1