Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang
{"title":"Fast Terrain-Adaptive Motion Generation using Deep Neural Networks","authors":"Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang","doi":"10.1145/3355088.3365157","DOIUrl":null,"url":null,"abstract":"We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"753 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.