A novel sketch-based 3D model retrieval approach based on skeleton

Jing Zhang, Baosheng Kang, Bo Jiang, Di Zhang
{"title":"A novel sketch-based 3D model retrieval approach based on skeleton","authors":"Jing Zhang, Baosheng Kang, Bo Jiang, Di Zhang","doi":"10.11591/IJICT.V8I1.PP1-12","DOIUrl":null,"url":null,"abstract":"Since the skeleton represents the topology structure of the query sketch and 2D views of 3D model, this paper proposes a novel sketch-based 3D model retrieval algorithm which utilizes skeleton characteristics as the features to describe the object shape. Firstly, we propose advanced skeleton strength map (ASSM) algorithm to create the skeleton which computes the skeleton strength map by isotropic diffusion on the gradient vector field, selects critical points from the skeleton strength map and connects them by Kruskal's algorithm. Then, we propose histogram feature comparison algorithm which adopts the radii of the disks at skeleton points and the lengths of skeleton branches to extract the histogram feature, and compare the similarity between two skeletons using the histogram feature matrix of skeleton endpoints. Experiment results demonstrate that our approach which combines these two algorithms significantly outperforms several leading sketch-based retrieval approaches.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"755 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJICT.V8I1.PP1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Since the skeleton represents the topology structure of the query sketch and 2D views of 3D model, this paper proposes a novel sketch-based 3D model retrieval algorithm which utilizes skeleton characteristics as the features to describe the object shape. Firstly, we propose advanced skeleton strength map (ASSM) algorithm to create the skeleton which computes the skeleton strength map by isotropic diffusion on the gradient vector field, selects critical points from the skeleton strength map and connects them by Kruskal's algorithm. Then, we propose histogram feature comparison algorithm which adopts the radii of the disks at skeleton points and the lengths of skeleton branches to extract the histogram feature, and compare the similarity between two skeletons using the histogram feature matrix of skeleton endpoints. Experiment results demonstrate that our approach which combines these two algorithms significantly outperforms several leading sketch-based retrieval approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于骨架的基于草图的三维模型检索方法
由于骨架代表了查询草图的拓扑结构和三维模型的二维视图,本文提出了一种新的基于草图的三维模型检索算法,该算法利用骨架特征作为描述对象形状的特征。首先,我们提出了一种先进的骨架强度图(ASSM)算法,该算法通过梯度向量场上的各向同性扩散计算骨架强度图,并从骨架强度图中选择关键点,通过Kruskal算法将它们连接起来。然后,我们提出了直方图特征比较算法,该算法采用骨架点处磁盘的半径和骨架分支的长度来提取直方图特征,并利用骨架端点的直方图特征矩阵来比较两个骨架之间的相似性。实验结果表明,我们的方法结合了这两种算法,显著优于几种领先的基于草图的检索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1