Improved Feature Selection Based on Normalized Mutual Information

Li Yin, Xingfei Ma, Mengxi Yang, Zhao Wei, Wenqiang Gu
{"title":"Improved Feature Selection Based on Normalized Mutual Information","authors":"Li Yin, Xingfei Ma, Mengxi Yang, Zhao Wei, Wenqiang Gu","doi":"10.1109/DCABES.2015.135","DOIUrl":null,"url":null,"abstract":"For the question (NMIFS) algorithm has the disadvantages of redundancy. This paper introduces a new feature selection method by enhanced NMIFS algorithm. A new quality estimation function is introduced in the new feature selection algorithm to overcome the shortcomings of the classic NMIFS, and the experiment shows on that normalized mutual information feature selection The experiment shows that the INMIFS can generate impressive results in accuracy and redundancy.","PeriodicalId":444588,"journal":{"name":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2015.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

For the question (NMIFS) algorithm has the disadvantages of redundancy. This paper introduces a new feature selection method by enhanced NMIFS algorithm. A new quality estimation function is introduced in the new feature selection algorithm to overcome the shortcomings of the classic NMIFS, and the experiment shows on that normalized mutual information feature selection The experiment shows that the INMIFS can generate impressive results in accuracy and redundancy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归一化互信息的改进特征选择
对于问题(NMIFS)算法存在冗余的缺点。本文介绍了一种新的基于增强NMIFS算法的特征选择方法。在特征选择算法中引入了新的质量估计函数,克服了传统NMIFS算法的不足,并通过实验验证了该算法在归一化互信息特征选择上的有效性。实验结果表明,该算法在准确率和冗余度方面都取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User Classification Method of P2P Network Based on Clustering Path Planning for Welding Spot Detection A Modified Dynamic Window Approach to Obstacle Avoidance Combined with Fuzzy Logic Applying Innovation Resistance Theory to Understand Consumer Resistance of Using Online Travel in Thailand GRIB Parallel Design of Civil Aviation Meteorological Data Processing System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1