{"title":"Extracting Pathlets FromWeak Tracking Data","authors":"Kevin Streib, James W. Davis","doi":"10.1109/AVSS.2010.24","DOIUrl":null,"url":null,"abstract":"We present a novel framework for extracting “pathlets”from tracking data. A pathlet is defined as a motion regionthat contains tracks having the same origin and destinationin the scene and that are temporally correlated. The proposedmethod requires only weak tracking data (multiplefragmented tracks per target). We employ a probabilisticstate space representation to construct a Markovian transitionmodel and estimate the scene entry/exit locations. Theresulting model is treated as a set of vertices in a graph anda similarity matrix is built which describes broader nonlocalrelationships between states. A Spectral Clusteringapproach is then used to automatically extract the pathletsof the scene. We present experimental results from scenes ofvarying difficulty and compare against other approaches.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present a novel framework for extracting “pathlets”from tracking data. A pathlet is defined as a motion regionthat contains tracks having the same origin and destinationin the scene and that are temporally correlated. The proposedmethod requires only weak tracking data (multiplefragmented tracks per target). We employ a probabilisticstate space representation to construct a Markovian transitionmodel and estimate the scene entry/exit locations. Theresulting model is treated as a set of vertices in a graph anda similarity matrix is built which describes broader nonlocalrelationships between states. A Spectral Clusteringapproach is then used to automatically extract the pathletsof the scene. We present experimental results from scenes ofvarying difficulty and compare against other approaches.