Shapelet Selection for Efficient Time Series Classification by Dynamic Time Warping

Hyungseok Yun, Gilseung Ahn, S. Hur
{"title":"Shapelet Selection for Efficient Time Series Classification by Dynamic Time Warping","authors":"Hyungseok Yun, Gilseung Ahn, S. Hur","doi":"10.1109/ICEET56468.2022.10007242","DOIUrl":null,"url":null,"abstract":"Shapelets are often used to solve time series classification problems and have a major drawback that they require high computational complexity in the extraction process. In order to solve this problem, many researchers have developed methods to obtain shapelets efficiently, but their classification performances are not good or they require hyperparameters. In this study, we propose a shapelet selection method using DTW(dynamic time warping). The proposed method searches for frequent patterns occurring in time series through the warping path of DTW and uses it as shapelets. To validate the proposed method, twenty-one benchmark datasets of time series are applied to our method and the existing methods, with which the classification accuracy and shapelet extraction time are compared. The proposed method shows no significant difference from the previous studies in computation time, while attains excellent performance in classification accuracy.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shapelets are often used to solve time series classification problems and have a major drawback that they require high computational complexity in the extraction process. In order to solve this problem, many researchers have developed methods to obtain shapelets efficiently, but their classification performances are not good or they require hyperparameters. In this study, we propose a shapelet selection method using DTW(dynamic time warping). The proposed method searches for frequent patterns occurring in time series through the warping path of DTW and uses it as shapelets. To validate the proposed method, twenty-one benchmark datasets of time series are applied to our method and the existing methods, with which the classification accuracy and shapelet extraction time are compared. The proposed method shows no significant difference from the previous studies in computation time, while attains excellent performance in classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态时间翘曲的高效时间序列分类小波选择
Shapelets通常用于解决时间序列分类问题,其主要缺点是在提取过程中需要很高的计算复杂度。为了解决这一问题,许多研究人员开发了高效获取shapelets的方法,但这些方法的分类性能不佳或需要超参数。在这项研究中,我们提出了一种基于DTW(动态时间翘曲)的小块选择方法。该方法通过DTW的扭曲路径搜索时间序列中出现的频繁模式,并将其作为shapelets使用。为了验证本文方法的有效性,将21个时间序列的基准数据集应用于本文方法和现有方法,并与之进行分类精度和形状提取时间的比较。该方法在计算时间上与以往的研究没有显著差异,在分类精度上取得了优异的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of IoT-based SMART Monitoring System for Hydro-Powered Generator Novel Scheme for Mutual Authentication to Isolate Sinkhole Attack in Wireless Sensor Networks A Stackelberg Game for Balancing Profits in IoT Ecosystem Efficient Electric Vehicle Charger Based on Wide Band-gap Materials for V2G and G2V. Image De-noising and Edge Segmentation using Bilateral Filtering and Gabor-cut for Edge Representation of a Breast Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1