Fingerprint quality assessment using a no-reference image quality metric

Mohamad El-Abed, A. Ninassi, C. Charrier, C. Rosenberger
{"title":"Fingerprint quality assessment using a no-reference image quality metric","authors":"Mohamad El-Abed, A. Ninassi, C. Charrier, C. Rosenberger","doi":"10.5281/ZENODO.43594","DOIUrl":null,"url":null,"abstract":"The quality assessment of the acquired biometric raw data is very important as it deeply affects the performance of biometric systems and consequently their usability. Poor quality samples increase the enrolment failures, and decrease the system performance. In this paper, we present a new quality assessment metric of fingerprints. Its main originality lies in the use of a no-reference image quality metric. The proposed quality metric combines two types of parameters through a weighted sum optimized by a genetic algorithm: 1) image quality criterion and 2) pattern-based quality criteria (salient and patch-based features). BOZORTH3 matching system and the FVC2002 DB3 fingerprint database are used to clarify the benefits of the presented quality metric.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The quality assessment of the acquired biometric raw data is very important as it deeply affects the performance of biometric systems and consequently their usability. Poor quality samples increase the enrolment failures, and decrease the system performance. In this paper, we present a new quality assessment metric of fingerprints. Its main originality lies in the use of a no-reference image quality metric. The proposed quality metric combines two types of parameters through a weighted sum optimized by a genetic algorithm: 1) image quality criterion and 2) pattern-based quality criteria (salient and patch-based features). BOZORTH3 matching system and the FVC2002 DB3 fingerprint database are used to clarify the benefits of the presented quality metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用无参考图像质量度量的指纹质量评估
获得的生物识别原始数据的质量评估是非常重要的,因为它深刻影响生物识别系统的性能,从而影响它们的可用性。低质量的样本增加了注册失败,降低了系统性能。本文提出了一种新的指纹质量评价指标。它的主要独创性在于使用无参考图像质量度量。提出的质量度量通过遗传算法优化的加权和将两类参数组合在一起:1)图像质量准则和2)基于模式的质量准则(基于显著特征和基于补丁的特征)。使用BOZORTH3匹配系统和FVC2002 DB3指纹数据库来阐明所提出的质量度量的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1