Echo Doppler Flow Classification and Goodness Assessment with Convolutional Neural Networks

Ghada Zamzmi, L. Hsu, Wen Li, V. Sachdev, Sameer Kiran Antani
{"title":"Echo Doppler Flow Classification and Goodness Assessment with Convolutional Neural Networks","authors":"Ghada Zamzmi, L. Hsu, Wen Li, V. Sachdev, Sameer Kiran Antani","doi":"10.1109/ICMLA.2019.00283","DOIUrl":null,"url":null,"abstract":"Doppler Echocardiography is critical for measuring abnormal cardiac function and diagnosing valvular stenosis and regurgitation. The current practice for assessing and interpreting Doppler echo images is time-consuming and depends highly on the experience of the operator. The limitations of this practice can be mitigated using fully automated intelligent systems. Essential first steps toward comprehensive computer-assisted Doppler echocardiographic interpretation include automatic classification into view/flow categories and goodness assessment of these flows. In this paper, we propose a deep learning-based method for Doppler flow classification and goodness assessment. The method has been trained on labeled images representing a wide range of real-world clinical variation. Our method, when evaluated on unseen data, achieved overall accuracies of 91.6% and 88.9% for flow classification and goodness assessment, respectively. While further research is needed, these results are encouraging and prove the feasibility of using fully automated intelligent systems for analyzing and interpreting Doppler echo images.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Doppler Echocardiography is critical for measuring abnormal cardiac function and diagnosing valvular stenosis and regurgitation. The current practice for assessing and interpreting Doppler echo images is time-consuming and depends highly on the experience of the operator. The limitations of this practice can be mitigated using fully automated intelligent systems. Essential first steps toward comprehensive computer-assisted Doppler echocardiographic interpretation include automatic classification into view/flow categories and goodness assessment of these flows. In this paper, we propose a deep learning-based method for Doppler flow classification and goodness assessment. The method has been trained on labeled images representing a wide range of real-world clinical variation. Our method, when evaluated on unseen data, achieved overall accuracies of 91.6% and 88.9% for flow classification and goodness assessment, respectively. While further research is needed, these results are encouraging and prove the feasibility of using fully automated intelligent systems for analyzing and interpreting Doppler echo images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的回波多普勒流分类及优度评价
多普勒超声心动图是测量异常心功能和诊断瓣膜狭窄和反流的关键。目前评估和解释多普勒回波图像的做法是耗时的,并且高度依赖于操作员的经验。使用全自动智能系统可以减轻这种做法的局限性。全面的计算机辅助多普勒超声心动图解释的基本第一步包括自动分类为视点/血流类别和对这些血流的良好评估。本文提出了一种基于深度学习的多普勒流分类和优度评价方法。该方法已经在代表广泛的现实世界临床变化的标记图像上进行了训练。当对未见过的数据进行评估时,我们的方法在流量分类和优度评估方面的总体准确率分别为91.6%和88.9%。虽然需要进一步的研究,但这些结果令人鼓舞,并证明了使用全自动智能系统分析和解释多普勒回波图像的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1