{"title":"Discriminative Cluster Refinement: Improving Object Category Recognition Given Limited Training Data","authors":"Liu Yang, Rong Jin, C. Pantofaru, R. Sukthankar","doi":"10.1109/CVPR.2007.383270","DOIUrl":null,"url":null,"abstract":"A popular approach to problems in image classification is to represent the image as a bag of visual words and then employ a classifier to categorize the image. Unfortunately, a significant shortcoming of this approach is that the clustering and classification are disconnected. Since the clustering into visual words is unsupervised, the representation does not necessarily capture the aspects of the data that are most useful for classification. More seriously, the semantic relationship between clusters is lost, causing the overall classification performance to suffer. We introduce \"discriminative cluster refinement\" (DCR), a method that explicitly models the pairwise relationships between different visual words by exploiting their co-occurrence information. The assigned class labels are used to identify the co-occurrence patterns that are most informative for object classification. DCR employs a maximum-margin approach to generate an optimal kernel matrix for classification. One important benefit of DCR is that it integrates smoothly into existing bag-of-words information retrieval systems by employing the set of visual words generated by any clustering method. While DCR could improve a broad class of information retrieval systems, this paper focuses on object category recognition. We present a direct comparison with a state-of-the art method on the PASCAL 2006 database and show that cluster refinement results in a significant improvement in classification accuracy given a small number of training examples.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
A popular approach to problems in image classification is to represent the image as a bag of visual words and then employ a classifier to categorize the image. Unfortunately, a significant shortcoming of this approach is that the clustering and classification are disconnected. Since the clustering into visual words is unsupervised, the representation does not necessarily capture the aspects of the data that are most useful for classification. More seriously, the semantic relationship between clusters is lost, causing the overall classification performance to suffer. We introduce "discriminative cluster refinement" (DCR), a method that explicitly models the pairwise relationships between different visual words by exploiting their co-occurrence information. The assigned class labels are used to identify the co-occurrence patterns that are most informative for object classification. DCR employs a maximum-margin approach to generate an optimal kernel matrix for classification. One important benefit of DCR is that it integrates smoothly into existing bag-of-words information retrieval systems by employing the set of visual words generated by any clustering method. While DCR could improve a broad class of information retrieval systems, this paper focuses on object category recognition. We present a direct comparison with a state-of-the art method on the PASCAL 2006 database and show that cluster refinement results in a significant improvement in classification accuracy given a small number of training examples.