Implicit Surface Contrastive Clustering for LiDAR Point Clouds

Zaiwei Zhang, Min Bai, Erran L. Li
{"title":"Implicit Surface Contrastive Clustering for LiDAR Point Clouds","authors":"Zaiwei Zhang, Min Bai, Erran L. Li","doi":"10.1109/CVPR52729.2023.02080","DOIUrl":null,"url":null,"abstract":"Self-supervised pretraining on large unlabeled datasets has shown tremendous success in improving the task performance of many 2D and small scale 3D computer vision tasks. However, the popular pretraining approaches have not been impactfully applied to outdoor LiDAR point cloud perception due to the latter's scene complexity and wide range. We propose a new self-supervised pretraining method ISCC with two novel pretext tasks for LiDAR point clouds. The first task uncovers semantic information by sorting local groups of points in the scene into a globally consistent set of semantically meaningful clusters using contrastive learning, complemented by a second task which reasons about precise surfaces of various parts of the scene through implicit surface reconstruction to learn geometric structures. We demonstrate their effectiveness through transfer learning on 3D object detection and semantic segmentation in real world LiDAR scenes. We further design an unsupervised semantic grouping task to show that our approach learns highly semantically meaningful features.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.02080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Self-supervised pretraining on large unlabeled datasets has shown tremendous success in improving the task performance of many 2D and small scale 3D computer vision tasks. However, the popular pretraining approaches have not been impactfully applied to outdoor LiDAR point cloud perception due to the latter's scene complexity and wide range. We propose a new self-supervised pretraining method ISCC with two novel pretext tasks for LiDAR point clouds. The first task uncovers semantic information by sorting local groups of points in the scene into a globally consistent set of semantically meaningful clusters using contrastive learning, complemented by a second task which reasons about precise surfaces of various parts of the scene through implicit surface reconstruction to learn geometric structures. We demonstrate their effectiveness through transfer learning on 3D object detection and semantic segmentation in real world LiDAR scenes. We further design an unsupervised semantic grouping task to show that our approach learns highly semantically meaningful features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光雷达点云的隐式表面对比聚类
在大型未标记数据集上的自监督预训练在提高许多2D和小规模3D计算机视觉任务的任务性能方面取得了巨大成功。然而,由于室外激光雷达点云感知的场景复杂性和范围广,目前流行的预训练方法尚未有效地应用于室外激光雷达点云感知。针对激光雷达点云,提出了一种新的自监督预训练方法ISCC。第一个任务通过使用对比学习将场景中的局部点组分类为全局一致的语义有意义的聚类来揭示语义信息,第二个任务通过隐式表面重建来推断场景中各个部分的精确表面以学习几何结构。我们通过迁移学习在真实世界激光雷达场景中的3D物体检测和语义分割上证明了它们的有效性。我们进一步设计了一个无监督语义分组任务,以表明我们的方法学习了高度语义有意义的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1