An auto-regressive GLR algorithm for adaptive radar detection

A. Sheikhi, M. Nayebi
{"title":"An auto-regressive GLR algorithm for adaptive radar detection","authors":"A. Sheikhi, M. Nayebi","doi":"10.1109/NRC.1998.678016","DOIUrl":null,"url":null,"abstract":"A detector for the case of a radar target with known Doppler and unknown complex amplitude in colored noise of unknown covariance has been derived. The detector assumes that the noise is an autoregressive process and estimates the unknown parameters by maximum likelihood estimation for the use in the generalized likelihood ratio test. The asymptotic performance of this detector has been derived and it has been shown that for large data records this detector is CFAR. By computer simulation it has been shown that for a moderate size of data record, the performance of this detector approaches the asymptotic results.","PeriodicalId":432418,"journal":{"name":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1998.678016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A detector for the case of a radar target with known Doppler and unknown complex amplitude in colored noise of unknown covariance has been derived. The detector assumes that the noise is an autoregressive process and estimates the unknown parameters by maximum likelihood estimation for the use in the generalized likelihood ratio test. The asymptotic performance of this detector has been derived and it has been shown that for large data records this detector is CFAR. By computer simulation it has been shown that for a moderate size of data record, the performance of this detector approaches the asymptotic results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应雷达探测的自回归GLR算法
推导了一种针对未知协方差彩色噪声中已知多普勒和未知复幅雷达目标的检测器。检测器假设噪声是一个自回归过程,并通过最大似然估计估计未知参数,用于广义似然比检验。推导了该检测器的渐近性能,并表明对于大数据记录,该检测器是CFAR。计算机仿真结果表明,对于中等大小的数据记录,该检测器的性能接近渐近结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Notice of RetractionMultichannel super high resolution. Novel channel equalization and multidimensional arbitrary pattern synthesis Improving the sidelobes of arrays fed by multiple-beam beam formers Antenna measures of merit for ultra-wide synthetic aperture radar Intelligent low rate compression of speckled SAR imagery Airborne ground moving target indication using non-side-looking antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1