{"title":"Evolution of optimal control for energy-efficient transport","authors":"A. Gaier, A. Asteroth","doi":"10.1109/IVS.2014.6856455","DOIUrl":null,"url":null,"abstract":"An evolutionary algorithm is presented to solve the optimal control problem for energy optimal driving. Results show that the algorithm computes equivalent strategies as traditional graph searching approaches like dynamic programming or A*. The algorithm proves to be time efficient while saving multiple orders of magnitude in memory compared to graph searching techniques. Thereby making it applicable in embedded applications such as eco-driving assistants or intelligent route planning.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
An evolutionary algorithm is presented to solve the optimal control problem for energy optimal driving. Results show that the algorithm computes equivalent strategies as traditional graph searching approaches like dynamic programming or A*. The algorithm proves to be time efficient while saving multiple orders of magnitude in memory compared to graph searching techniques. Thereby making it applicable in embedded applications such as eco-driving assistants or intelligent route planning.