Fair Leader Election for Rational Agents in Asynchronous Rings and Networks

A. Yifrach, Y. Mansour
{"title":"Fair Leader Election for Rational Agents in Asynchronous Rings and Networks","authors":"A. Yifrach, Y. Mansour","doi":"10.1145/3212734.3212767","DOIUrl":null,"url":null,"abstract":"We study a game theoretic model where a coalition of processors might collude to bias the outcome of the protocol, where we assume that the processors always prefer any legitimate outcome over a non-legitimate one. We show that the problems of Fair Leader Election and Fair Coin Toss are equivalent, and focus on Fair Leader Election. Our main focus is on a directed asynchronous ring of n processors, where we investigate the protocol proposed by Abraham et al. [4] and studied in Afek et al. [5]. We show that in general the protocol is resilient only to sub-linear size coalitions. Specifically, we show that Ω( p n logn) randomly located processors or Ω( 3 √ n) adversarially located processors can force any outcome. We complement this by showing that the protocol is resilient to any adversarial coalition of size O( 4 √ n). We propose a modification to the protocol, and show that it is resilient to every coalition of size ?( √ n), by exhibiting both an attack and a resilience result. For every k ≥ 1, we define a family of graphs Gk that can be simulated by trees where each node in the tree simulates at most k processors. We show that for every graph in Gk , there is no fair leader election protocol that is resilient to coalitions of size k. Our result generalizes a previous result of Abraham et al. [4] that states that for every graph, there is no fair leader election protocol which is resilient to coalitions of size ?n/2 ?.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We study a game theoretic model where a coalition of processors might collude to bias the outcome of the protocol, where we assume that the processors always prefer any legitimate outcome over a non-legitimate one. We show that the problems of Fair Leader Election and Fair Coin Toss are equivalent, and focus on Fair Leader Election. Our main focus is on a directed asynchronous ring of n processors, where we investigate the protocol proposed by Abraham et al. [4] and studied in Afek et al. [5]. We show that in general the protocol is resilient only to sub-linear size coalitions. Specifically, we show that Ω( p n logn) randomly located processors or Ω( 3 √ n) adversarially located processors can force any outcome. We complement this by showing that the protocol is resilient to any adversarial coalition of size O( 4 √ n). We propose a modification to the protocol, and show that it is resilient to every coalition of size ?( √ n), by exhibiting both an attack and a resilience result. For every k ≥ 1, we define a family of graphs Gk that can be simulated by trees where each node in the tree simulates at most k processors. We show that for every graph in Gk , there is no fair leader election protocol that is resilient to coalitions of size k. Our result generalizes a previous result of Abraham et al. [4] that states that for every graph, there is no fair leader election protocol which is resilient to coalitions of size ?n/2 ?.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异步环和网络中理性代理的公平领导选举
我们研究了一个博弈论模型,其中一个处理器联盟可能串通起来对协议的结果产生偏见,其中我们假设处理器总是更喜欢任何合法的结果而不是不合法的结果。我们证明公平领袖选举问题和公平抛硬币问题是等价的,并重点讨论公平领袖选举问题。我们主要关注的是n个处理器的定向异步环,我们研究了Abraham等人[4]提出的协议,并在Afek等人[5]中进行了研究。我们表明,在一般情况下,该协议仅对次线性大小的联盟具有弹性。具体来说,我们表明Ω(p n logn)随机定位的处理器或Ω(3√n)对抗定位的处理器可以强制任何结果。我们通过证明协议对任何规模为O(4√n)的对抗联盟都具有弹性来补充这一点。我们提出了对协议的修改,并通过展示攻击和弹性结果来证明它对每个规模为O(√n)的联盟都具有弹性。对于每一个k≥1,我们定义了一个图族Gk,可以用树来模拟,其中树中的每个节点最多模拟k个处理器。我们证明,对于Gk中的每个图,不存在对规模为k的联盟具有弹性的公平领导人选举协议。我们的结果推广了Abraham等人[4]先前的结果,该结果表明,对于每个图,不存在对规模为?n/2 ?的联盟具有弹性的公平领导人选举协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial: Consistency Choices in Modern Distributed Systems Locking Timestamps versus Locking Objects Recoverable Mutual Exclusion Under System-Wide Failures Nesting-Safe Recoverable Linearizability: Modular Constructions for Non-Volatile Memory Brief Announcement: Beeping a Time-Optimal Leader Election
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1