Towards Efficient Decentralized Federated Learning

C. Pappas, D. Papadopoulos, Dimitris Chatzopoulos, Eleni Panagou, S. Lalis, M. Vavalis
{"title":"Towards Efficient Decentralized Federated Learning","authors":"C. Pappas, D. Papadopoulos, Dimitris Chatzopoulos, Eleni Panagou, S. Lalis, M. Vavalis","doi":"10.1109/ICDCSW56584.2022.00023","DOIUrl":null,"url":null,"abstract":"We focus on the problem of efficiently deploying a federated learning training task in a decentralized setting with multiple aggregators. To that end, we introduce a number of improvements and modifications to the recently proposed IPLS protocol. In particular, we relax its assumption for di-rect communication across participants, using instead indirect communication over a decentralized storage system, effectively turning it into a partially asynchronous protocol. Moreover, we secure it against malicious aggregators (that drop or alter data) by relying on homomorphic cryptographic commitments for efficient verification of aggregation. We implement the modified IPLS protocol and report on its performance and potential bottlenecks. Finally, we identify important next steps for this line of research.","PeriodicalId":357138,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW56584.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the problem of efficiently deploying a federated learning training task in a decentralized setting with multiple aggregators. To that end, we introduce a number of improvements and modifications to the recently proposed IPLS protocol. In particular, we relax its assumption for di-rect communication across participants, using instead indirect communication over a decentralized storage system, effectively turning it into a partially asynchronous protocol. Moreover, we secure it against malicious aggregators (that drop or alter data) by relying on homomorphic cryptographic commitments for efficient verification of aggregation. We implement the modified IPLS protocol and report on its performance and potential bottlenecks. Finally, we identify important next steps for this line of research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向高效的分散联邦学习
我们专注于在具有多个聚合器的分散设置中有效部署联邦学习训练任务的问题。为此,我们对最近提出的IPLS协议进行了一些改进和修改。特别是,我们放宽了参与者之间直接通信的假设,而是使用分散存储系统上的间接通信,有效地将其转变为部分异步协议。此外,我们通过依赖于有效验证聚合的同态加密承诺来保护它免受恶意聚合器(删除或更改数据)的侵害。我们实现了修改后的IPLS协议,并报告了其性能和潜在的瓶颈。最后,我们确定了这条研究路线的重要下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Holium: A Protocol for Data Transformation Pipelines ROFL: RObust privacy preserving Federated Learning Hyperverse: A High Throughput Pattern Matching Engine for Metaverse Cost-Effective Optimal Multi-Source Energy Management Technique in Heterogeneous Networks Local Model Quality Control Method Based on Credit Mortgage for Enterprise Credit Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1