{"title":"Coherent Optical Tomography","authors":"A. Devaney","doi":"10.1364/iact.1984.tud3","DOIUrl":null,"url":null,"abstract":"The methods of conventional (X-ray) tomography have, in the past, been employed in a number of applications in optics such as combustion diagnostics [1] and con-destructive evaluation of strongly refracting objects such as optical fibers [2]. In these applications a laser is employed much in the same way as an X-ray source is employed in X-ray tomography [3]. For example, in combustion diagnostics [1] a narrow laser beam is made to scan through the object of interest and a photo detector records the transmitted light intensity thereby yielding a \"projection\" of the object’s attenuation profile. The algorithms of X-ray tomography such as ART or the filtered backprojection algorithm [3] can then reconstruct a cross-section of the attenuation profile from the measured data. In the case of strongly refracting objects [2] the goal is to reconstruct the object’s velocity profile from optical path length measurements of the transmitted optical field. These measurements yield a \"generalized projection\" of the real part of the object’s complex index of refraction profile. Although the reconstruction algorithms of X-ray tomography cannot be employed due to the refraction of the probing optical field, generalized reconstruction algorithms based on a ray model of the optical field have been developed [2] that can yield reconstructions of the real part of the index of refraction from the \"generalized projections\".","PeriodicalId":133192,"journal":{"name":"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/iact.1984.tud3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The methods of conventional (X-ray) tomography have, in the past, been employed in a number of applications in optics such as combustion diagnostics [1] and con-destructive evaluation of strongly refracting objects such as optical fibers [2]. In these applications a laser is employed much in the same way as an X-ray source is employed in X-ray tomography [3]. For example, in combustion diagnostics [1] a narrow laser beam is made to scan through the object of interest and a photo detector records the transmitted light intensity thereby yielding a "projection" of the object’s attenuation profile. The algorithms of X-ray tomography such as ART or the filtered backprojection algorithm [3] can then reconstruct a cross-section of the attenuation profile from the measured data. In the case of strongly refracting objects [2] the goal is to reconstruct the object’s velocity profile from optical path length measurements of the transmitted optical field. These measurements yield a "generalized projection" of the real part of the object’s complex index of refraction profile. Although the reconstruction algorithms of X-ray tomography cannot be employed due to the refraction of the probing optical field, generalized reconstruction algorithms based on a ray model of the optical field have been developed [2] that can yield reconstructions of the real part of the index of refraction from the "generalized projections".
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相干光学层析成像
传统的(x射线)层析成像方法在过去已被用于光学领域的许多应用,如燃烧诊断[1]和强折射物体(如光纤)的共毁评估[2]。在这些应用中,激光的使用方式与x射线源在x射线断层扫描中的使用方式大致相同[3]。例如,在燃烧诊断[1]中,一个狭窄的激光束被用来扫描感兴趣的物体,一个光电探测器记录透射光强度,从而产生物体衰减曲线的“投影”。x射线断层成像算法,如ART或滤波后的反向投影算法[3],可以根据测量数据重建衰减剖面的横截面。在强折射物体的情况下[2],目标是从透射光场的光路长度测量中重建物体的速度剖面。这些测量结果产生了物体复折射率剖面实部的“广义投影”。虽然由于探测光场的折射,x射线层析成像的重建算法无法使用,但基于光场射线模型的广义重建算法已经被开发出来[2],可以从“广义投影”中得到折射率的实部重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Resolution Computed Tomography for Solid Modeling and Computer Aided Design Tutorial on Algorithms for 3D Properties of Materials that Bend Rays The use of computed tomography in the non-destructive testing of polymeric materials The Application of Gamma Ray Computer Tomography to Oil Recovery Studies Tutorial on Hardware for High-Speed Computed Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1