File Fragment Type Classification by Bag-Of-Visual-Words

Mina Erfan, S. Jalili
{"title":"File Fragment Type Classification by Bag-Of-Visual-Words","authors":"Mina Erfan, S. Jalili","doi":"10.22042/ISECURE.2021.243876.570","DOIUrl":null,"url":null,"abstract":"File fragments’ type classification in the absence of header and file system information, is a major building block in various solutions devoted to file carving, memory analysis and network forensics. Over the past decades, a substantial amount of effort has been put into developing methods to classify file fragments. Meanwhile, there has been little innovation on the basics of approaches given into file and fragment type classification. In this research, by mapping each fragment as an 8-bit grayscale image, a method of texture analysis has been used in place of a classifier. Essentially, we show how to construct a vocabulary of visual words with the Bag-of-Visual-Words method. Using the n-gram technique, the feature vector is comprised of visual words occurrence. On the classification of 31 file types over 31000 fragments, our approach reached a maximum overall accuracy of 74.9% in classifying 512 byte fragments and 87.3% in classifying 4096 byte fragments.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2021.243876.570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

File fragments’ type classification in the absence of header and file system information, is a major building block in various solutions devoted to file carving, memory analysis and network forensics. Over the past decades, a substantial amount of effort has been put into developing methods to classify file fragments. Meanwhile, there has been little innovation on the basics of approaches given into file and fragment type classification. In this research, by mapping each fragment as an 8-bit grayscale image, a method of texture analysis has been used in place of a classifier. Essentially, we show how to construct a vocabulary of visual words with the Bag-of-Visual-Words method. Using the n-gram technique, the feature vector is comprised of visual words occurrence. On the classification of 31 file types over 31000 fragments, our approach reached a maximum overall accuracy of 74.9% in classifying 512 byte fragments and 87.3% in classifying 4096 byte fragments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Bag-Of-Visual-Words的文件片段类型分类
在没有文件头和文件系统信息的情况下,文件片段的类型分类是各种致力于文件雕刻、内存分析和网络取证的解决方案的主要组成部分。在过去的几十年里,人们在开发文件片段分类的方法上付出了大量的努力。与此同时,在文件和片段类型分类的基本方法上几乎没有创新。在本研究中,通过将每个片段映射为8位灰度图像,使用纹理分析方法代替分类器。从本质上讲,我们展示了如何使用视觉词袋方法构建视觉词的词汇表。使用n-gram技术,特征向量由视觉词出现组成。在超过31000个片段的31种文件类型的分类中,我们的方法在512字节片段的分类中达到了74.9%的最大总体准确率,在4096字节片段的分类中达到了87.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1