Multi-Scale Video Inverse Tone Mapping with Deformable Alignment

Jiaqi Zou, Ke Mei, Songlin Sun
{"title":"Multi-Scale Video Inverse Tone Mapping with Deformable Alignment","authors":"Jiaqi Zou, Ke Mei, Songlin Sun","doi":"10.1109/VCIP49819.2020.9301780","DOIUrl":null,"url":null,"abstract":"Inverse tone mapping(iTM) is an operation to transform low-dynamic-range (LDR) content to high-dynamic-range (HDR) content, which is an effective technique to improve the visual experience. ITM has developed rapidly with deep learning algorithms in recent years. However, the great majority of deeplearning-based iTM methods are aimed at images and ignore the temporal correlations of consecutive frames in videos. In this paper, we propose a multi-scale video iTM network with deformable alignment, which increases time consistency in videos. We first a lign t he i nput c onsecutive L DR f rames a t t he feature level by deformable convolutions and then simultaneously use multi-frame information to generate the HDR frame. Additionally, we adopt a multi-scale iTM architecture with a pyramid pooling module, which enables our network to reconstruct details as well as global features. The proposed network achieves better performance compared to other iTM methods on quantitative metrics and gain a significant visual improvement.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Inverse tone mapping(iTM) is an operation to transform low-dynamic-range (LDR) content to high-dynamic-range (HDR) content, which is an effective technique to improve the visual experience. ITM has developed rapidly with deep learning algorithms in recent years. However, the great majority of deeplearning-based iTM methods are aimed at images and ignore the temporal correlations of consecutive frames in videos. In this paper, we propose a multi-scale video iTM network with deformable alignment, which increases time consistency in videos. We first a lign t he i nput c onsecutive L DR f rames a t t he feature level by deformable convolutions and then simultaneously use multi-frame information to generate the HDR frame. Additionally, we adopt a multi-scale iTM architecture with a pyramid pooling module, which enables our network to reconstruct details as well as global features. The proposed network achieves better performance compared to other iTM methods on quantitative metrics and gain a significant visual improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可变形对齐的多尺度视频反色调映射
反调映射(iTM)是一种将低动态范围(LDR)内容转换为高动态范围(HDR)内容的操作,是改善视觉体验的有效技术。近年来,随着深度学习算法的发展,ITM得到了迅速发展。然而,绝大多数基于深度学习的iTM方法都是针对图像的,忽略了视频中连续帧的时间相关性。本文提出了一种具有可变形对齐的多尺度视频iTM网络,提高了视频的时间一致性。我们首先通过可变形卷积将输入的3个连续的L - DR帧线性化到特征层,然后同时使用多帧信息生成HDR帧。此外,我们采用了多尺度iTM架构和金字塔池模块,使我们的网络能够重建细节和全局特征。与其他iTM方法相比,本文提出的网络在定量指标上取得了更好的性能,并且在视觉上有了显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1