Time- and Frequency-Domain Dynamic Spectrum Access: Learning Cyclic Medium Access Patterns in Partially Observable Environments

Sebastian Lindner, Daniel Stolpmann, A. Timm‐Giel
{"title":"Time- and Frequency-Domain Dynamic Spectrum Access: Learning Cyclic Medium Access Patterns in Partially Observable Environments","authors":"Sebastian Lindner, Daniel Stolpmann, A. Timm‐Giel","doi":"10.14279/TUJ.ECEASST.80.1164.1122","DOIUrl":null,"url":null,"abstract":"Upcoming communication systems increasingly often tackle the spectrum scarcity problem through the coexistence with legacy systems in the same frequency band. Cognitive Radio presents popular methods for Dynamic Spectrum Access (DSA) that enable coexistence. Historically, DSA meant a separation solely in the frequency domain, while in recent years it has been extended through the dimension of time, by employing Machine Learning to learn semi-deterministic and cyclic medium access patterns of the legacy system that are observed through channel sensing. When this pattern is learnable, then a new system can utilize a neural network and predict future medium accesses, thus steering its own medium access. We investigate this novel and more fine-grained version of DSA, propose a predictor and show its capability of reliably predicting future medium accesses of a legacy system in an aeronautical coexistence scenario. We extend the predictor to the case of partial observability, where only a narrowband receiver is available, s.t. observations are limited to a single sensed channel per time slot. In particular, we propose a custom loss function that is tailored to partially observable environments. In the spirit of Open Science, all implementation files are released under an open license.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/TUJ.ECEASST.80.1164.1122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Upcoming communication systems increasingly often tackle the spectrum scarcity problem through the coexistence with legacy systems in the same frequency band. Cognitive Radio presents popular methods for Dynamic Spectrum Access (DSA) that enable coexistence. Historically, DSA meant a separation solely in the frequency domain, while in recent years it has been extended through the dimension of time, by employing Machine Learning to learn semi-deterministic and cyclic medium access patterns of the legacy system that are observed through channel sensing. When this pattern is learnable, then a new system can utilize a neural network and predict future medium accesses, thus steering its own medium access. We investigate this novel and more fine-grained version of DSA, propose a predictor and show its capability of reliably predicting future medium accesses of a legacy system in an aeronautical coexistence scenario. We extend the predictor to the case of partial observability, where only a narrowband receiver is available, s.t. observations are limited to a single sensed channel per time slot. In particular, we propose a custom loss function that is tailored to partially observable environments. In the spirit of Open Science, all implementation files are released under an open license.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时域和频域动态频谱访问:在部分可观察环境中学习循环介质访问模式
未来的通信系统越来越多地通过与原有系统在同一频段内共存来解决频谱短缺问题。认知无线电提出了一种流行的动态频谱接入(DSA)方法,使之能够共存。从历史上看,DSA意味着仅在频域中进行分离,而近年来,通过使用机器学习来学习通过通道感知观察到的遗留系统的半确定性和循环介质访问模式,DSA已经扩展到时间维度。当这种模式是可学习的,那么一个新的系统就可以利用神经网络来预测未来的媒体访问,从而控制自己的媒体访问。我们研究了这种新颖的、更细粒度的DSA版本,提出了一个预测器,并展示了它在航空共存场景中可靠地预测遗留系统未来介质访问的能力。我们将预测器扩展到部分可观测性的情况,其中只有一个窄带接收器可用,s.t.观测仅限于每个时隙的单个感测信道。特别是,我们提出了一个定制的损失函数,它是针对部分可观察的环境量身定制的。本着开放科学的精神,所有的实现文件都是在开放许可下发布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Management for Multi-Agent Systems Towards SCION-enabled IXPs: The SCION Peering Coordinator Demonstration: A cloud-control system equipped with intrusion detection and mitigation Demo: Traffic Splitting for Tor - A Defense against Fingerprinting Attacks Preface and Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1