Accurate Inference with Inaccurate RRAM Devices: Statistical Data, Model Transfer, and On-line Adaptation

G. Charan, Jubin Hazra, K. Beckmann, Xiaocong Du, Gokul Krishnan, R. Joshi, N. Cady, Yu Cao
{"title":"Accurate Inference with Inaccurate RRAM Devices: Statistical Data, Model Transfer, and On-line Adaptation","authors":"G. Charan, Jubin Hazra, K. Beckmann, Xiaocong Du, Gokul Krishnan, R. Joshi, N. Cady, Yu Cao","doi":"10.1109/DAC18072.2020.9218605","DOIUrl":null,"url":null,"abstract":"Resistive random-access memory (RRAM) is a promising technology for in-memory computing with high storage density, fast inference, and good compatibility with CMOS. However, the mapping of a pre-trained deep neural network (DNN) model on RRAM suffers from realistic device issues, especially the variation and quantization error, resulting in a significant reduction in inference accuracy. In this work, we first extract these statistical properties from 65 nm RRAM data on 300mm wafers. The RRAM data present 10-levels in quantization and 50% variance, resulting in an accuracy drop to 31.76% and 10.49% for MNIST and CIFAR-10 datasets, respectively. Based on the experimental data, we propose a combination of machine learning algorithms and on-line adaptation to recover the accuracy with the minimum overhead. The recipe first applies Knowledge Distillation (KD) to transfer an ideal model into a student model with statistical variations and 10 levels. Furthermore, an on-line sparse adaptation (OSA) method is applied to the DNN model mapped on to the RRAM array. Using importance sampling, OSA adds a small SRAM array that is sparsely connected to the main RRAM array; only this SRAM array is updated to recover the accuracy. As demonstrated on MNIST and CIFAR-10 datasets, a 7.86% area cost is sufficient to achieve baseline accuracy for the 65 nm RRAM devices.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Resistive random-access memory (RRAM) is a promising technology for in-memory computing with high storage density, fast inference, and good compatibility with CMOS. However, the mapping of a pre-trained deep neural network (DNN) model on RRAM suffers from realistic device issues, especially the variation and quantization error, resulting in a significant reduction in inference accuracy. In this work, we first extract these statistical properties from 65 nm RRAM data on 300mm wafers. The RRAM data present 10-levels in quantization and 50% variance, resulting in an accuracy drop to 31.76% and 10.49% for MNIST and CIFAR-10 datasets, respectively. Based on the experimental data, we propose a combination of machine learning algorithms and on-line adaptation to recover the accuracy with the minimum overhead. The recipe first applies Knowledge Distillation (KD) to transfer an ideal model into a student model with statistical variations and 10 levels. Furthermore, an on-line sparse adaptation (OSA) method is applied to the DNN model mapped on to the RRAM array. Using importance sampling, OSA adds a small SRAM array that is sparsely connected to the main RRAM array; only this SRAM array is updated to recover the accuracy. As demonstrated on MNIST and CIFAR-10 datasets, a 7.86% area cost is sufficient to achieve baseline accuracy for the 65 nm RRAM devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准确推断与不准确的RRAM设备:统计数据,模型转移,和在线适应
电阻式随机存取存储器(RRAM)具有存储密度高、推理速度快、与CMOS兼容等优点,是一种很有前途的内存计算技术。然而,预训练深度神经网络(DNN)模型在RRAM上的映射受到现实设备问题的影响,特别是变异和量化误差,导致推理精度显著降低。在这项工作中,我们首先从300mm晶圆上的65nm RRAM数据中提取这些统计特性。RRAM数据量化程度为10级,方差为50%,导致MNIST和CIFAR-10数据集的准确率分别降至31.76%和10.49%。基于实验数据,我们提出了一种结合机器学习算法和在线自适应的方法,以最小的开销恢复精度。该配方首先应用知识蒸馏(Knowledge Distillation, KD)将理想模型转化为具有统计变化和10个水平的学生模型。此外,将在线稀疏自适应(OSA)方法应用于映射到随机存储器阵列上的DNN模型。通过重要性采样,OSA增加了一个小的SRAM阵列,该阵列稀疏地连接到主RRAM阵列;只有这个SRAM阵列被更新以恢复准确性。如MNIST和CIFAR-10数据集所示,7.86%的面积成本足以达到65nm RRAM器件的基线精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1