Current transport in graphene tunnel field effect transistor for RF integrated circuits

M. Fahad, A. Srivastava, A. Sharma, C. Mayberry
{"title":"Current transport in graphene tunnel field effect transistor for RF integrated circuits","authors":"M. Fahad, A. Srivastava, A. Sharma, C. Mayberry","doi":"10.1109/IEEE-IWS.2013.6616800","DOIUrl":null,"url":null,"abstract":"In this work, an analytical current transport model of Graphene Nanoribbon (GNR) Tunnel Field Effect Transistor (T-FET) is presented considering drain source voltage (VDS), gate source voltage (VGS), carrier mobility (μ) and top gate dielectric (tOX). For a GNR width of 5nm at 0.275eV band gap, ON current of 1605 μA/μm is calculated with a very high ON/OFF current ratio of 107. Subthreshold slope of 7.07mV/decade is calculated from I-VGS transfer characteristics. Current saturation is observed for input voltage, VGS of 0.28V and beyond for varying VDS values. Performance of the proposed model is compared with the earlier published work and the projected 2011 ITRS MOSFET requirements and it is found that considering proper device geometry and input voltages, GNR T-FET can demonstrate seven times lower power dissipation and eight times higher intrinsic speed in the upper GHz range than in conventional CMOS technology.","PeriodicalId":344851,"journal":{"name":"2013 IEEE International Wireless Symposium (IWS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2013.6616800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, an analytical current transport model of Graphene Nanoribbon (GNR) Tunnel Field Effect Transistor (T-FET) is presented considering drain source voltage (VDS), gate source voltage (VGS), carrier mobility (μ) and top gate dielectric (tOX). For a GNR width of 5nm at 0.275eV band gap, ON current of 1605 μA/μm is calculated with a very high ON/OFF current ratio of 107. Subthreshold slope of 7.07mV/decade is calculated from I-VGS transfer characteristics. Current saturation is observed for input voltage, VGS of 0.28V and beyond for varying VDS values. Performance of the proposed model is compared with the earlier published work and the projected 2011 ITRS MOSFET requirements and it is found that considering proper device geometry and input voltages, GNR T-FET can demonstrate seven times lower power dissipation and eight times higher intrinsic speed in the upper GHz range than in conventional CMOS technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
射频集成电路用石墨烯隧道场效应晶体管的电流输运
本文建立了考虑漏源电压(VDS)、栅极电压(VGS)、载流子迁移率(μ)和顶栅极介电介质(tOX)的石墨烯纳米带(GNR)隧道场效应晶体管(T-FET)电流输运分析模型。当GNR宽度为5nm,带隙为0.275eV时,ON电流为1605 μA/μm, ON/OFF电流比高达107。根据I-VGS传输特性计算出7.07mV/ 10年的亚阈值斜率。对于输入电压,VGS为0.28V及以上的不同VDS值,观察到电流饱和。将所提出模型的性能与早期发表的工作和预计的2011年ITRS MOSFET要求进行比较,发现考虑适当的器件几何形状和输入电压,GNR T-FET在高GHz范围内比传统CMOS技术的功耗低7倍,固有速度高8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral modeling of power amplifier with long term memory effects using recurrent neural networks Ultra-wideband (UWB) bandpass filter based on stub-loaded ring resonator Differential bandpass filter with high common-mode rejection ratio inside the differential-mode passband using controllable common-mode transmission zero Analysis and design of CMOS Doherty power amplifier using voltage combining method Experimental study of effects of coaxial cables in magnetic resonant wireless power transfer system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1