Neural networks for non-linear control

O. Sørensen
{"title":"Neural networks for non-linear control","authors":"O. Sørensen","doi":"10.1109/CCA.1994.381233","DOIUrl":null,"url":null,"abstract":"This paper describes how a neural network, structured as a multi layer perceptron, is trained to predict, simulate and control a non-linear process. The identified model is the well-known known innovation state space model, and the identification is based only on input/output measurements, so in fact the extended Kalman filter problem is solved. The training method is the recursive prediction error method using a Gauss-Newton search direction, known from linear system identification theory. Finally, the model and training methods are tested on a noisy, strongly non-linear, dynamic process, showing excellent results for the trained net to act as an actual system identifier, predictor and simulator. Further, the trained net allows actual on-line extraction of the parameter matrices of the model giving a basis for better control of the non-linear process.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes how a neural network, structured as a multi layer perceptron, is trained to predict, simulate and control a non-linear process. The identified model is the well-known known innovation state space model, and the identification is based only on input/output measurements, so in fact the extended Kalman filter problem is solved. The training method is the recursive prediction error method using a Gauss-Newton search direction, known from linear system identification theory. Finally, the model and training methods are tested on a noisy, strongly non-linear, dynamic process, showing excellent results for the trained net to act as an actual system identifier, predictor and simulator. Further, the trained net allows actual on-line extraction of the parameter matrices of the model giving a basis for better control of the non-linear process.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性控制的神经网络
本文描述了如何训练一个多层感知器结构的神经网络来预测、模拟和控制一个非线性过程。所识别的模型是众所周知的创新状态空间模型,并且辨识仅基于输入/输出测量值,因此实际上解决了扩展卡尔曼滤波问题。训练方法是使用高斯-牛顿搜索方向的递归预测误差方法,从线性系统辨识理论中已知。最后,在一个有噪声、强非线性、动态的过程中对模型和训练方法进行了测试,结果表明,训练后的网络可以作为实际的系统识别器、预测器和模拟器。此外,训练后的网络允许实际在线提取模型的参数矩阵,为更好地控制非线性过程奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability issues in a disturbance attenuation based technique for manipulator control /spl mu/-optimal advanced PID control of an industrial high purity distillation column Robust controller design based on guaranteed cost control approach for rigid robots H/sub /spl infin// control of a flexible arm: coprime factors design using the gap metric Prediction in real-time control using adaptive networks with on-line learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1