Henrique Rodrigues, Richard D. Strong, A. S. Akyurek, T. Simunic
{"title":"Dynamic optical switching for latency sensitive applications","authors":"Henrique Rodrigues, Richard D. Strong, A. S. Akyurek, T. Simunic","doi":"10.1109/ANCS.2015.7110122","DOIUrl":null,"url":null,"abstract":"Dynamic optical interconnects using fast Optical Circuit Switches (OCS) are emerging as a scalable and energy efficient alternative to increasing network demands. Initial concerns regarding slow switching speeds of OCSs were recently overcome, with prototypes enabling circuit setup in a few microseconds. This can potentially broaden the classes of traffic patterns that can be carried efficiently by an alloptical interconnect. However, application performance on such newer interconnects has not been fully understood yet. In this paper, we explore the the gap between advances in faster OCS hardware and the potential success of such newer technologies in terms of application performance and cluster energy efficiency. We evaluate the performance of latencysensitive distributed applications running on a fast OCS environment, analyzing its impact to overall server and network energy efficiency. We also discuss scheduling inefficiencies of current fast OCSs and evaluate ideas to solve them. We find that while some distributed applications suffer minimal performance penalty when running on fast OCSs, more flexible schedulers, like the ones outlined in this paper, improve application performance and OCS efficiency by up to 2.44 times compared to the strategies in the literature. Dynamic optical interconnects using fast Optical Circuit Switches (OCS) are emerging as a scalable and energy efficient alternative to increasing network demands. Initial concerns regarding slow switching speeds of OCSs were recently overcome, with prototypes enabling circuit setup in a few microseconds. This can potentially broaden the classes of traffic patterns that can be carried efficiently by an all-optical interconnect. However, application performance on such newer interconnects has not been fully understood yet. In this paper, we explore the the gap between advances in faster OCS hardware and the potential success of such newer technologies in terms of application performance and cluster energy efficiency. We evaluate the performance of latency-sensitive distributed applications running on a fast OCS environment, analyzing its impact to overall server and network energy efficiency. We also discuss scheduling inefficiencies of current fast OCSs and evaluate ideas to solve them. We find that while some distributed applications suffer minimal performance penalty when running on fast OCSs, more exible schedulers, like the ones outlined in this paper, improve application performance and OCS efficiency by up to 2.44 times compared to the strategies in the literature.","PeriodicalId":186232,"journal":{"name":"2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANCS.2015.7110122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Dynamic optical interconnects using fast Optical Circuit Switches (OCS) are emerging as a scalable and energy efficient alternative to increasing network demands. Initial concerns regarding slow switching speeds of OCSs were recently overcome, with prototypes enabling circuit setup in a few microseconds. This can potentially broaden the classes of traffic patterns that can be carried efficiently by an alloptical interconnect. However, application performance on such newer interconnects has not been fully understood yet. In this paper, we explore the the gap between advances in faster OCS hardware and the potential success of such newer technologies in terms of application performance and cluster energy efficiency. We evaluate the performance of latencysensitive distributed applications running on a fast OCS environment, analyzing its impact to overall server and network energy efficiency. We also discuss scheduling inefficiencies of current fast OCSs and evaluate ideas to solve them. We find that while some distributed applications suffer minimal performance penalty when running on fast OCSs, more flexible schedulers, like the ones outlined in this paper, improve application performance and OCS efficiency by up to 2.44 times compared to the strategies in the literature. Dynamic optical interconnects using fast Optical Circuit Switches (OCS) are emerging as a scalable and energy efficient alternative to increasing network demands. Initial concerns regarding slow switching speeds of OCSs were recently overcome, with prototypes enabling circuit setup in a few microseconds. This can potentially broaden the classes of traffic patterns that can be carried efficiently by an all-optical interconnect. However, application performance on such newer interconnects has not been fully understood yet. In this paper, we explore the the gap between advances in faster OCS hardware and the potential success of such newer technologies in terms of application performance and cluster energy efficiency. We evaluate the performance of latency-sensitive distributed applications running on a fast OCS environment, analyzing its impact to overall server and network energy efficiency. We also discuss scheduling inefficiencies of current fast OCSs and evaluate ideas to solve them. We find that while some distributed applications suffer minimal performance penalty when running on fast OCSs, more exible schedulers, like the ones outlined in this paper, improve application performance and OCS efficiency by up to 2.44 times compared to the strategies in the literature.