Simulating plant plasticity under light environment: A source-sink approach

Haoyu Wang, Mengzhen Kang, Jing Hua
{"title":"Simulating plant plasticity under light environment: A source-sink approach","authors":"Haoyu Wang, Mengzhen Kang, Jing Hua","doi":"10.1109/PMA.2012.6524869","DOIUrl":null,"url":null,"abstract":"Simulation of plant structure competing for light source has mostly been done by directly modifying plant structure according to light interception. Functional-structural plant models, however, emphasize the influence of light interception on biomass production, and consequently plant structure. In this paper, we integrate a light distribution model with GreenLab model, which used Beer-Law in computing biomass production. By replacing Beer-Law with a light interception model for biomass production, the combined model was able to simulate the effect of light condition on plant structure through source-sink regulation. The positive and negative sides of this approach are discussed.","PeriodicalId":117786,"journal":{"name":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2012.6524869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Simulation of plant structure competing for light source has mostly been done by directly modifying plant structure according to light interception. Functional-structural plant models, however, emphasize the influence of light interception on biomass production, and consequently plant structure. In this paper, we integrate a light distribution model with GreenLab model, which used Beer-Law in computing biomass production. By replacing Beer-Law with a light interception model for biomass production, the combined model was able to simulate the effect of light condition on plant structure through source-sink regulation. The positive and negative sides of this approach are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光环境下植物可塑性模拟:一种源汇方法
植物结构对光源的竞争模拟大多是通过直接根据截光对植物结构进行修饰来实现的。然而,功能-结构植物模型强调光拦截对生物量生产的影响,从而影响植物结构。在本文中,我们将光分布模型与GreenLab模型相结合,该模型使用Beer-Law计算生物质产量。将Beer-Law模型替换为生物质生产的光拦截模型,该组合模型能够通过源库调节来模拟光照条件对植物结构的影响。讨论了这种方法的积极和消极方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical feedback between circadian clock and carbohydrate availability explains adaptive response of starch metabolism to longer night Investigating the influence of geometrical traits on light interception efficiency of apple trees: A modelling study with MAppleT A plastic, dynamic and reducible 3D geometric model for simulating gramineous leaves Modeling the environmental and seasonal influence on canopy dynamic and litterfall of even-aged forest ecosystems by a model coupling growth & yield and process-based approaches Assessment of the Role of initial conditions in the setting of heterogeneity of functional Traits in a population of oilseed rape plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1