Self-adaptive attractor-shaping for oscillators networks

Julio Rodríguez, M. Hongler, Philippe Blanchard
{"title":"Self-adaptive attractor-shaping for oscillators networks","authors":"Julio Rodríguez, M. Hongler, Philippe Blanchard","doi":"10.1109/INDS.2011.6024786","DOIUrl":null,"url":null,"abstract":"We consider a network of N coupled limit cycle oscillators, each having a set of control parameters Λ<inf>k</inf>, k = 1, …, N, that controls the frequency and the geometry of the limit cycle. We implement a self-adaptive mechanism that drives the local systems to share a common set of parameters Λ<inf>c</inf>. This situation therefore strongly differs from classical synchronization problems where the Λ<inf>k</inf> are kept constant. The deformations of the Λ<inf>k</inf> towards the consensual Λ<inf>c</inf> are “plastic” — once Λ<inf>c</inf> is reached, it remains permanent even in absence of interactions. Again, this has to be contrasted with classical synchronization which does not affect the Λ<inf>k</inf> (in the absence of interactions, individual behaviors are restored). The resulting consensual Λ<inf>c</inf> can be analytically characterized. In general, the set of initial conditions from which Λ<inf>c</inf> is reached depends on the network topology. The class of models discussed here unveil the basic features necessary to construct a wider class of dynamical system sharing self-adaptive attractor-shaping capability. Finally, we present numerical simulations that corroborate our theoretical assertions.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"487 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider a network of N coupled limit cycle oscillators, each having a set of control parameters Λk, k = 1, …, N, that controls the frequency and the geometry of the limit cycle. We implement a self-adaptive mechanism that drives the local systems to share a common set of parameters Λc. This situation therefore strongly differs from classical synchronization problems where the Λk are kept constant. The deformations of the Λk towards the consensual Λc are “plastic” — once Λc is reached, it remains permanent even in absence of interactions. Again, this has to be contrasted with classical synchronization which does not affect the Λk (in the absence of interactions, individual behaviors are restored). The resulting consensual Λc can be analytically characterized. In general, the set of initial conditions from which Λc is reached depends on the network topology. The class of models discussed here unveil the basic features necessary to construct a wider class of dynamical system sharing self-adaptive attractor-shaping capability. Finally, we present numerical simulations that corroborate our theoretical assertions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
振子网络的自适应吸引子整形
我们考虑一个N个耦合极限环振荡器的网络,每个振荡器都有一组控制参数Λk, k = 1,…,N,它控制极限环的频率和几何形状。我们实现了一种自适应机制,它驱动本地系统共享一组公共参数Λc。因此,这种情况与保持Λk不变的经典同步问题有很大不同。Λk向共识Λc的变形是“可塑的”——一旦达到Λc,即使没有相互作用,它仍然是永久的。同样,这必须与不影响Λk的经典同步(在没有交互的情况下,恢复个人行为)形成对比。由此产生的共识Λc可以分析表征。一般来说,达到Λc的初始条件集取决于网络拓扑。本文讨论的这类模型揭示了构建更广泛的一类共享自适应吸引子塑造能力的动力系统所必需的基本特征。最后,我们提出了数值模拟来证实我们的理论断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative comparisons of digital chaotic circuits for use in communications Study of PM10 pollution using signal analysis methods Constant switching frequency techniques for sliding mode control in DC-DC converters Geometrical interpretation of jump phenomena in nonlinear dynamical circuits Stability analysis of recurrent neural networks with time-varying activation functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1