{"title":"Tracking objects using density matching and shape priors","authors":"Zhang Tao, D. Freedman","doi":"10.1109/ICCV.2003.1238466","DOIUrl":null,"url":null,"abstract":"We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this level-set implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105
Abstract
We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this level-set implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown.