Process Design of a Novel Low Temperature Methanol Synthesis Process Using an Air-blown Autothermal Reformer

Christian Ahoba-Sam, L. Øi, Klaus‐Joachim Jens
{"title":"Process Design of a Novel Low Temperature Methanol Synthesis Process Using an Air-blown Autothermal Reformer","authors":"Christian Ahoba-Sam, L. Øi, Klaus‐Joachim Jens","doi":"10.3384/ECP1815351","DOIUrl":null,"url":null,"abstract":"Methanol (MeOH) synthesis at low temperature (100 C) presents an opportunity for full syngas conversion per pass. This presents a cheaper alternative for MeOH synthesis using an air-blown autothermal reformer (ATR) rather than the conventional high temperature (>250 C) MeOH synthesis approach which requires an expensive cryogenic O2-blown ATR. The aim of this work was to use the process simulation program Aspen HYSYS to simulate and optimize the reactor conditions for a complete MeOH process design using an air-blown ATR. Our results revealed that, while syngas produced from ‘normal’ air-blown ATR (syngas composition 0.20CO:0.40H2:0.39N2) required 100 bar to obtain full conversion per pass, syngas produced from enriched airblown ATR (syngas composition 0.31CO:0.62H2:0.07 N2) required 60 bar total syngas pressure to achieve the same. Even though the energy generated in both processes was enough to cover the heating demand in the total process with surplus, the enriched air-blown system provides a better energy recovery if the surplus energy is not used for extra power generation. The total process energy demand due to compression was estimated to be 2270 and 983 MJ/ton MeOH product for the normal air-blown and enriched air-blown systems respectively. A process design was proposed based on the optimized conditions for the enriched air-blown process.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"558 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP1815351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Methanol (MeOH) synthesis at low temperature (100 C) presents an opportunity for full syngas conversion per pass. This presents a cheaper alternative for MeOH synthesis using an air-blown autothermal reformer (ATR) rather than the conventional high temperature (>250 C) MeOH synthesis approach which requires an expensive cryogenic O2-blown ATR. The aim of this work was to use the process simulation program Aspen HYSYS to simulate and optimize the reactor conditions for a complete MeOH process design using an air-blown ATR. Our results revealed that, while syngas produced from ‘normal’ air-blown ATR (syngas composition 0.20CO:0.40H2:0.39N2) required 100 bar to obtain full conversion per pass, syngas produced from enriched airblown ATR (syngas composition 0.31CO:0.62H2:0.07 N2) required 60 bar total syngas pressure to achieve the same. Even though the energy generated in both processes was enough to cover the heating demand in the total process with surplus, the enriched air-blown system provides a better energy recovery if the surplus energy is not used for extra power generation. The total process energy demand due to compression was estimated to be 2270 and 983 MJ/ton MeOH product for the normal air-blown and enriched air-blown systems respectively. A process design was proposed based on the optimized conditions for the enriched air-blown process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风动自热重整器低温甲醇合成新工艺的工艺设计
在低温(100℃)下合成甲醇(MeOH)提供了每道完全合成气转化的机会。这提供了一种使用空气吹自热重整器(ATR)合成甲醇的更便宜的替代方法,而不是传统的高温(>250℃)甲醇合成方法,这种方法需要昂贵的低温o2吹自热重整器。这项工作的目的是使用过程模拟程序Aspen HYSYS来模拟和优化使用气吹ATR的完整MeOH工艺设计的反应器条件。我们的研究结果表明,“正常”气吹ATR(合成气成分0.20CO:0.40H2:0.39N2)生产的合成气每道需要100 bar才能实现完全转化,而富集气吹ATR(合成气成分0.31CO:0.62H2:0.07 N2)生产的合成气需要60 bar的合成气总压力才能实现完全转化。虽然这两个过程产生的能量足以满足整个过程的剩余加热需求,但如果剩余能量不用于额外发电,富集风吹系统可以提供更好的能量回收。对于普通吹气系统和富集吹气系统,由于压缩引起的总过程能量需求估计分别为2270和983兆焦耳/吨MeOH产品。在优化工艺条件的基础上,提出了富吹工艺的工艺设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Computational study of Chemical Looping Combustion Using the concept of data enclosing tunnel as an online feedback tool for simulator training FMI4j: A Software Package for working with Functional Mock-up Units on the Java Virtual Machine Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor A Data-Driven Sensitivity Analysis Approach for Dynamically Positioned Vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1