Improved PCR design for mouse DNA by training finite state machines

S. Yadav, S. Corns
{"title":"Improved PCR design for mouse DNA by training finite state machines","authors":"S. Yadav, S. Corns","doi":"10.1109/CIBCB.2010.5510701","DOIUrl":null,"url":null,"abstract":"This project presents an updated method for classification of polymerase chain reaction primers in mice using finite state classifiers. This is done to compensate for many lab, organism and chemical specific factors that are costly. Using Finite State Classifiers can help decrease the number of primers that fail to amplify correctly. For training these classifiers, five different evolutionary algorithms that use an incremental fitness reward are used. Variations to the number of generations and the values in the fitness reward are examined, and the resulting designs are presented. By controlling the fitness reward correctly, there is a potential to develop classifiers with a high likelihood of accepting only good primers. The proposed tool can act as a post-production add-on to the standard primer picking algorithm for gene expression detection in mice to compensate for local factors that may induce errors.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This project presents an updated method for classification of polymerase chain reaction primers in mice using finite state classifiers. This is done to compensate for many lab, organism and chemical specific factors that are costly. Using Finite State Classifiers can help decrease the number of primers that fail to amplify correctly. For training these classifiers, five different evolutionary algorithms that use an incremental fitness reward are used. Variations to the number of generations and the values in the fitness reward are examined, and the resulting designs are presented. By controlling the fitness reward correctly, there is a potential to develop classifiers with a high likelihood of accepting only good primers. The proposed tool can act as a post-production add-on to the standard primer picking algorithm for gene expression detection in mice to compensate for local factors that may induce errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过训练有限状态机改进小鼠DNA PCR设计
本项目提出了一种更新的方法,用于分类聚合酶链反应引物在小鼠使用有限状态分类器。这样做是为了补偿许多实验室、有机体和化学特定因素的成本。使用有限状态分类器可以帮助减少无法正确放大的引物数量。为了训练这些分类器,使用了五种不同的使用增量适应度奖励的进化算法。研究了代数和适应度奖励值的变化,并给出了最终的设计。通过正确控制适应度奖励,就有可能开发出只接受好的引物的分类器。该工具可以作为标准引物选择算法的后期附加组件,用于小鼠基因表达检测,以补偿可能导致错误的局部因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional data classification for temporal gene expression data with kernel-induced random forests Detecting retroviruses using reading frame information and side effect machines Classification of HIV-1 protease crystal structures using Random Forest, linear discriminant analysis and logistic regression An exploration of individual RNA structural elements in RNA gene finding Support vectors based correlation coefficient for gene and sample selection in cancer classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1