Automatic Seismic First Arrival Picking With Deep-Learning

P. Xie, J. Boelle, C. Blais
{"title":"Automatic Seismic First Arrival Picking With Deep-Learning","authors":"P. Xie, J. Boelle, C. Blais","doi":"10.3997/2214-4609.201803023","DOIUrl":null,"url":null,"abstract":"Summary This work implements a fully-convolutional neuron network to pick first arrival in difficult field land seismic data. Compared to traditional methods, it greatly improves the productivity. Current work is limited to 2D seismic shot gather and can be extended to 3D without much difficulty. In our test dataset, its picking takes few second per shot and has a credible precision.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Summary This work implements a fully-convolutional neuron network to pick first arrival in difficult field land seismic data. Compared to traditional methods, it greatly improves the productivity. Current work is limited to 2D seismic shot gather and can be extended to 3D without much difficulty. In our test dataset, its picking takes few second per shot and has a credible precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的地震首点自动拾取
本工作实现了一种全卷积神经元网络,用于提取难处理的陆地地震数据的首点。与传统方法相比,大大提高了生产效率。目前的工作仅限于二维地震镜头采集,可以很容易地扩展到三维。在我们的测试数据集中,它的每次挑选只需几秒钟,并且具有可靠的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pre-Stack Seismic Inversion With Deep Learning Automatic Facies Classification And Horizon Tracking In 3D Seismic Data Input Data Quality Influence On Lithoclass Predictions In Relation To Supervised Machine Learning Classification And Suppression Of Blending Noise Using CNN Machine Learning To Support Technical Document Indexing, How To Measure The Accuracy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1