Optimal learning of transition probabilities in the two-agent newsvendor problem

I. Ryzhov, Martin Valdez-Vivas, Warrren B Powell
{"title":"Optimal learning of transition probabilities in the two-agent newsvendor problem","authors":"I. Ryzhov, Martin Valdez-Vivas, Warrren B Powell","doi":"10.1109/WSC.2010.5679081","DOIUrl":null,"url":null,"abstract":"We examine a newsvendor problem with two agents: a requesting agent that observes private demand information, and an oversight agent that must determine how to allocate resources upon receiving a bid from the requesting agent. Because the two agents have different cost structures, the requesting agent tends to bid higher than the amount that is actually needed. As a result, the allocating agent needs to adaptively learn how to interpret the bids and estimate the requesting agent's biases. Learning must occur as quickly as possible, because each suboptimal resource allocation incurs an economic cost. We present a mathematical model that casts the problem as a Markov decision process with unknown transition probabilities. We then perform a simulation study comparing four different techniques for optimal learning of transition probabilities. The best technique is shown to be a knowledge gradient algorithm, based on a one-period look-ahead approach.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We examine a newsvendor problem with two agents: a requesting agent that observes private demand information, and an oversight agent that must determine how to allocate resources upon receiving a bid from the requesting agent. Because the two agents have different cost structures, the requesting agent tends to bid higher than the amount that is actually needed. As a result, the allocating agent needs to adaptively learn how to interpret the bids and estimate the requesting agent's biases. Learning must occur as quickly as possible, because each suboptimal resource allocation incurs an economic cost. We present a mathematical model that casts the problem as a Markov decision process with unknown transition probabilities. We then perform a simulation study comparing four different techniques for optimal learning of transition probabilities. The best technique is shown to be a knowledge gradient algorithm, based on a one-period look-ahead approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双智能体报贩问题中转移概率的最优学习
我们用两个代理来研究一个报贩问题:一个是观察私人需求信息的请求代理,一个是必须在收到请求代理的出价时决定如何分配资源的监督代理。由于两个代理具有不同的成本结构,提出请求的代理往往出价高于实际需要的金额。因此,分配代理需要自适应地学习如何解释出价并估计请求代理的偏差。学习必须尽可能快地进行,因为每个次优资源分配都会产生经济成本。我们提出了一个数学模型,将问题作为一个具有未知转移概率的马尔可夫决策过程。然后,我们进行了模拟研究,比较了四种不同的转移概率最佳学习技术。最好的方法是基于一周期前瞻性方法的知识梯度算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An exploration of the effects of maintenance manning on Combat Mission Readiness utilizing agent based modeling Project management simulation with PTB Project Team Builder Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation Modeling and simulation method to find and eliminate bottlenecks in production logistics systems Machine control level simulation of an AS/RS in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1