A new approach to combining outputs of multiple classifiers

M. Cococcioni, G. Frosini, B. Lazzerini, F. Marcelloni
{"title":"A new approach to combining outputs of multiple classifiers","authors":"M. Cococcioni, G. Frosini, B. Lazzerini, F. Marcelloni","doi":"10.1109/NAFIPS.2002.1018093","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for multiple classifier fusion. The classifier combiner operates on the single classifier outputs, which consist of vectors of pairs (c, d), with c being a class name and d the confidence degree with which a pattern is recognized as belonging to class c. The main idea of the combiner is to exploit the knowledge of the statistical behavior of the single classifiers on the training set to re-calculate a global recognition confidence degree based on the a posteriori probability that the input pattern belongs to a given class conditioned by the specific responses of the classifiers. Applying the Bayes's theorem we can also easily adapt our classifier combiner to a specific application. We compare our model with some popular techniques for classifier fusion on the Satimage and Phoneme data sets from. the database ELENA.. We show that our method is in most cases superior (or substantially equivalent) to the other techniques on both data sets.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"58 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel method for multiple classifier fusion. The classifier combiner operates on the single classifier outputs, which consist of vectors of pairs (c, d), with c being a class name and d the confidence degree with which a pattern is recognized as belonging to class c. The main idea of the combiner is to exploit the knowledge of the statistical behavior of the single classifiers on the training set to re-calculate a global recognition confidence degree based on the a posteriori probability that the input pattern belongs to a given class conditioned by the specific responses of the classifiers. Applying the Bayes's theorem we can also easily adapt our classifier combiner to a specific application. We compare our model with some popular techniques for classifier fusion on the Satimage and Phoneme data sets from. the database ELENA.. We show that our method is in most cases superior (or substantially equivalent) to the other techniques on both data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种组合多个分类器输出的新方法
提出了一种新的多分类器融合方法。分类器组合器对单个分类器输出进行操作,该输出由一对向量(c, d)组成,其中c为类名,d为模式被识别为属于类c的置信度。该组合器的主要思想是利用单个分类器在训练集上的统计行为知识,根据分类器的具体响应条件下输入模式属于给定类的后验概率,重新计算全局识别置信度。应用贝叶斯定理,我们还可以很容易地使分类器组合器适应特定的应用程序。我们将我们的模型与一些流行的分类器融合技术进行了比较。数据库ELENA..我们表明,在大多数情况下,我们的方法在这两个数据集上优于(或实质上等同)其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1