Segmental phoneme recognition using piecewise linear regression

S. Krishnan, P. Rao
{"title":"Segmental phoneme recognition using piecewise linear regression","authors":"S. Krishnan, P. Rao","doi":"10.1109/ICASSP.1994.389358","DOIUrl":null,"url":null,"abstract":"We propose an efficient, self-organizing segmental measurement based on piecewise linear regression (PLR) fit of the short-term measurement trajectories. The advantages of this description are: (i) it serves to decouple temporal measurements from the recognition strategy; and, (ii) it leads to lesser computation as compared with conventional methods. Also, acoustic context can be easily integrated into this framework. The PLR measurements are cast into a stochastic segmental framework for phoneme classification. We show that this requires static classifiers for each regression component. Finally, we evaluate this approach on the phoneme recognition task. Using the TIMIT database. This shows that the PLR description leads to a computationally simple alternative to existing approaches.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"428 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We propose an efficient, self-organizing segmental measurement based on piecewise linear regression (PLR) fit of the short-term measurement trajectories. The advantages of this description are: (i) it serves to decouple temporal measurements from the recognition strategy; and, (ii) it leads to lesser computation as compared with conventional methods. Also, acoustic context can be easily integrated into this framework. The PLR measurements are cast into a stochastic segmental framework for phoneme classification. We show that this requires static classifiers for each regression component. Finally, we evaluate this approach on the phoneme recognition task. Using the TIMIT database. This shows that the PLR description leads to a computationally simple alternative to existing approaches.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分段线性回归的分段音素识别
我们提出了一种基于短期测量轨迹分段线性回归(PLR)拟合的高效自组织分段测量方法。这种描述的优点是:(i)它可以将时间测量从识别策略中解耦;并且,(ii)与传统方法相比,它可以减少计算量。此外,声学环境可以很容易地集成到这个框架中。PLR测量值被转换成一个用于音素分类的随机分段框架。我们表明,这需要每个回归组件的静态分类器。最后,我们在音素识别任务中对该方法进行了评估。使用TIMIT数据库。这表明,PLR描述为现有方法提供了一种计算简单的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1