iELMNet: An Application for Traffic Sign Recognition using CNN and ELM

Aisha Batool, M. W. Nisar, Jamal Hussain Shah, A. Rehman, Tariq Sadad
{"title":"iELMNet: An Application for Traffic Sign Recognition using CNN and ELM","authors":"Aisha Batool, M. W. Nisar, Jamal Hussain Shah, A. Rehman, Tariq Sadad","doi":"10.1109/CAIDA51941.2021.9425114","DOIUrl":null,"url":null,"abstract":"Traffic Sign Recognition (TSR) is a crucial step for automated vehicles and driver assistance systems. Automated TSD in an extreme environment has always been challenging due to foggy, rainy, blurry, and cropping images. A real-time TSD model named improved Extreme Learning Machine Network (iELMNet) is proposed to tackle these challenges. Primary modules of iELMNet include: a) Custom DensNet; b) Accurate Anchor Prediction Model (A2PM); c) Scale Transformation (ST), and d) Extreme Learning Machine (ELM) classifier. Convolutional Neural Network (CNN) model improvises edges of traffic-signs using mapped images extracted from handcrafted features. A2PM removes the redundant features to improve efficiency. ST is utilized to allow the proposed technique for detecting these signs of variant sizes. ELM classifier tries to classify traffic signs robustly by minimizing the feature dimensions. The proposed model is evaluated over three publicly available datasets, i.e., CURE-TSR, TT100k, and GTSRB, and acquired 98.63%, 95.22%, and 99.45% precision, respectively. The output of proposed model demonstrates its competence and ability to implement it in a practical environment.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Traffic Sign Recognition (TSR) is a crucial step for automated vehicles and driver assistance systems. Automated TSD in an extreme environment has always been challenging due to foggy, rainy, blurry, and cropping images. A real-time TSD model named improved Extreme Learning Machine Network (iELMNet) is proposed to tackle these challenges. Primary modules of iELMNet include: a) Custom DensNet; b) Accurate Anchor Prediction Model (A2PM); c) Scale Transformation (ST), and d) Extreme Learning Machine (ELM) classifier. Convolutional Neural Network (CNN) model improvises edges of traffic-signs using mapped images extracted from handcrafted features. A2PM removes the redundant features to improve efficiency. ST is utilized to allow the proposed technique for detecting these signs of variant sizes. ELM classifier tries to classify traffic signs robustly by minimizing the feature dimensions. The proposed model is evaluated over three publicly available datasets, i.e., CURE-TSR, TT100k, and GTSRB, and acquired 98.63%, 95.22%, and 99.45% precision, respectively. The output of proposed model demonstrates its competence and ability to implement it in a practical environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iELMNet:基于CNN和ELM的交通标志识别应用
交通标志识别(TSR)是自动驾驶汽车和驾驶员辅助系统的关键步骤。由于雾、雨、模糊和裁剪图像,在极端环境下的自动TSD一直具有挑战性。为了解决这些问题,提出了一种名为改进极限学习机网络(iELMNet)的实时TSD模型。iELMNet的主要模块包括:a) Custom DensNet;b)准确锚点预测模型(A2PM);c) Scale Transformation (ST), d) Extreme Learning Machine (ELM)分类器。卷积神经网络(CNN)模型利用从手工特征中提取的映射图像来即兴绘制交通标志的边缘。A2PM删除了冗余功能以提高效率。ST被用来允许提议的技术来检测这些变化大小的迹象。ELM分类器试图通过最小化特征维度对交通标志进行鲁棒性分类。该模型在CURE-TSR、TT100k和GTSRB三个公开可用的数据集上进行了评估,分别获得了98.63%、95.22%和99.45%的精度。该模型的输出结果证明了其在实际环境中实现该模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1