Hyperspectral Detection and Identification with Constrained Target Subspaces

S. Adler-Golden, J. Gruninger, R. Sundberg
{"title":"Hyperspectral Detection and Identification with Constrained Target Subspaces","authors":"S. Adler-Golden, J. Gruninger, R. Sundberg","doi":"10.1109/IGARSS.2008.4779029","DOIUrl":null,"url":null,"abstract":"Subspace methods for hyperspectral imagery enable detection and identification of targets under unknown environmental conditions by specifying a subspace of possible target spectral signatures (and, optionally, a background subspace) and identifying closely fitting spectra in the image. In this study, detection performance in the thermal infrared (IR) was compared using various constrained and unconstrained basis set expansions of low-dimensional target subspaces. An initial investigation of detection using retrieved atmospheric parameters to reduce subspace size and/or dimensionality has also been performed.","PeriodicalId":237798,"journal":{"name":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2008.4779029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Subspace methods for hyperspectral imagery enable detection and identification of targets under unknown environmental conditions by specifying a subspace of possible target spectral signatures (and, optionally, a background subspace) and identifying closely fitting spectra in the image. In this study, detection performance in the thermal infrared (IR) was compared using various constrained and unconstrained basis set expansions of low-dimensional target subspaces. An initial investigation of detection using retrieved atmospheric parameters to reduce subspace size and/or dimensionality has also been performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束目标子空间的高光谱检测与识别
高光谱成像的子空间方法通过指定可能目标光谱特征的子空间(以及可选的背景子空间)并识别图像中紧密拟合的光谱,从而能够在未知环境条件下检测和识别目标。在本研究中,利用低维目标子空间的各种约束和无约束基集展开,比较了热红外(IR)的检测性能。还进行了利用检索到的大气参数进行探测的初步研究,以减小子空间大小和/或维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NPOESS Precipitation Retrievals using the ATMS Passive Microwave Spectrometer An Advanced Quantitative Retrieval Algorithm for Aerosol Optical Depth over Land from TERRA and AQUA MODIS Data POLSCAT Ku-band Radar Remote Sensing of Terrestrial Snow Cover SAR Measurement of Ocean Surface Wind Using A Physics Model Validation of Multilayered Cloud Properties using A-Train Satellite Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1