Alessandro Strano, D. Bertozzi, F. Triviño, J. L. Sánchez, F. J. Alfaro, J. Flich
{"title":"OSR-Lite: Fast and deadlock-free NoC reconfiguration framework","authors":"Alessandro Strano, D. Bertozzi, F. Triviño, J. L. Sánchez, F. J. Alfaro, J. Flich","doi":"10.1109/SAMOS.2012.6404161","DOIUrl":null,"url":null,"abstract":"Current and future on-chip networks will feature an enhanced degree of reconfigurability. Power management and virtualization strategies as well as the need to survive to the progressive onset of wear-out faults are root causes for that. In all these cases, a non-intrusive and efficient reconfiguration method is needed to allow the network to function uninterruptedly over the course of the reconfiguration process while remaining deadlock-free. This paper is inspired by the overlapped static reconfiguration (OSR) protocol developed for off-chip networks. However, in its native form its implementation in NoCs is out-of-reach. Therefore, we provide a careful engineering of the NoC switch architecture and of the system-level infrastructure to support a cost-effective, complete and transparent reconfiguration process. Performance during the reconfiguration process is not affected and implementation costs (critical path and area overhead) are proved to be fully affordable for a constrained system. Less than 250 cycles are needed for the reconfiguration process of an 8×8 2D mesh with marginal impact on system performance.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Current and future on-chip networks will feature an enhanced degree of reconfigurability. Power management and virtualization strategies as well as the need to survive to the progressive onset of wear-out faults are root causes for that. In all these cases, a non-intrusive and efficient reconfiguration method is needed to allow the network to function uninterruptedly over the course of the reconfiguration process while remaining deadlock-free. This paper is inspired by the overlapped static reconfiguration (OSR) protocol developed for off-chip networks. However, in its native form its implementation in NoCs is out-of-reach. Therefore, we provide a careful engineering of the NoC switch architecture and of the system-level infrastructure to support a cost-effective, complete and transparent reconfiguration process. Performance during the reconfiguration process is not affected and implementation costs (critical path and area overhead) are proved to be fully affordable for a constrained system. Less than 250 cycles are needed for the reconfiguration process of an 8×8 2D mesh with marginal impact on system performance.