{"title":"Scalable resource and admission management in class-based networks","authors":"E. Logota, Carlos Campos, S. Sargento, A. Neto","doi":"10.1109/ICCW.2013.6649400","DOIUrl":null,"url":null,"abstract":"Dynamic aggregate bandwidth over-reservation is a scalable approach for Quality of Service (QoS) control mechanisms, since surplus of reservation allows for admitting several flows without signaling the network. Our recent work, the Advanced Class-based resource Over-Reservation (ACOR), shows interesting results by significantly reducing QoS control signaling overhead with increased resource utilization without incurring QoS violation when compared with related solutions. However, ACOR is too sensitive to the number of paths that share bottleneck links. It also resorts to per-flow signaling when links are congested. In view of this, we propose the Extended-ACOR (E-ACOR), which extends ACOR architecture with a new approach, aiming at reducing the performance dependency on paths' density on bottleneck interfaces. Moreover, it is able to efficiently track congestion information throughout a network to prevent unnecessary signaling during network congestion time. Thus, E-ACOR is expected to scale large networks with reduced signaling. Analytical and simulation results demonstrate the efficiency and cost-effectiveness of E-ACOR over ACOR; by significantly reducing signaling frequency especially during critical periods of congestion.","PeriodicalId":252497,"journal":{"name":"2013 IEEE International Conference on Communications Workshops (ICC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Communications Workshops (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2013.6649400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Dynamic aggregate bandwidth over-reservation is a scalable approach for Quality of Service (QoS) control mechanisms, since surplus of reservation allows for admitting several flows without signaling the network. Our recent work, the Advanced Class-based resource Over-Reservation (ACOR), shows interesting results by significantly reducing QoS control signaling overhead with increased resource utilization without incurring QoS violation when compared with related solutions. However, ACOR is too sensitive to the number of paths that share bottleneck links. It also resorts to per-flow signaling when links are congested. In view of this, we propose the Extended-ACOR (E-ACOR), which extends ACOR architecture with a new approach, aiming at reducing the performance dependency on paths' density on bottleneck interfaces. Moreover, it is able to efficiently track congestion information throughout a network to prevent unnecessary signaling during network congestion time. Thus, E-ACOR is expected to scale large networks with reduced signaling. Analytical and simulation results demonstrate the efficiency and cost-effectiveness of E-ACOR over ACOR; by significantly reducing signaling frequency especially during critical periods of congestion.