Generative convolutional networks for latent fingerprint reconstruction

Jan Svoboda, Federico Monti, M. Bronstein
{"title":"Generative convolutional networks for latent fingerprint reconstruction","authors":"Jan Svoboda, Federico Monti, M. Bronstein","doi":"10.1109/BTAS.2017.8272727","DOIUrl":null,"url":null,"abstract":"Performance of fingerprint recognition depends heavily on the extraction of minutiae points. Enhancement of the fingerprint ridge pattern is thus an essential pre-processing step that noticeably reduces false positive and negative detection rates. A particularly challenging setting is when the fingerprint images are corrupted or partially missing. In this work, we apply generative convolutional networks to denoise visible minutiae and predict the missing parts of the ridge pattern. The proposed enhancement approach is tested as a pre-processing step in combination with several standard feature extraction methods such as MINDTCT, followed by biometric comparison using MCC and BO-ZORTH3. We evaluate our method on several publicly available latent fingerprint datasets captured using different sensors.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Performance of fingerprint recognition depends heavily on the extraction of minutiae points. Enhancement of the fingerprint ridge pattern is thus an essential pre-processing step that noticeably reduces false positive and negative detection rates. A particularly challenging setting is when the fingerprint images are corrupted or partially missing. In this work, we apply generative convolutional networks to denoise visible minutiae and predict the missing parts of the ridge pattern. The proposed enhancement approach is tested as a pre-processing step in combination with several standard feature extraction methods such as MINDTCT, followed by biometric comparison using MCC and BO-ZORTH3. We evaluate our method on several publicly available latent fingerprint datasets captured using different sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成卷积网络的潜在指纹重建
指纹识别的性能在很大程度上取决于特征点的提取。因此,指纹脊纹的增强是一个必要的预处理步骤,可以显著降低假阳性和假阴性的检测率。一个特别具有挑战性的设置是当指纹图像损坏或部分丢失时。在这项工作中,我们应用生成卷积网络去噪可见细节并预测脊图案的缺失部分。结合MINDTCT等几种标准特征提取方法,对所提出的增强方法作为预处理步骤进行了测试,然后使用MCC和BO-ZORTH3进行生物特征比较。我们在使用不同传感器捕获的几个公开可用的潜在指纹数据集上评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1