Forecasting the Coffee Consumption Demand in Vietnam Based on Grey Forecasting Model

Ngoc Thang Nguyen, Van-Thanh Phan, Van Dat Nguyen, Thanh Ha Le, Thao Vy Pham
{"title":"Forecasting the Coffee Consumption Demand in Vietnam Based on Grey Forecasting Model","authors":"Ngoc Thang Nguyen, Van-Thanh Phan, Van Dat Nguyen, Thanh Ha Le, Thao Vy Pham","doi":"10.1142/s2196888822500129","DOIUrl":null,"url":null,"abstract":"Forecasting the domestic coffee consumption demand is important for policy planning and making the right decisions. Thus, in this study, we try to find out the most suitable model among three proposed models (GM (1,1), DGM (1,1) and Grey Verhulst model (GVM)) for predicting the amount of domestic coffee consumption in Vietnam in the future. Yearly data of coffee consumption from 2010–2020 are used in this research. The experimental results indicated that the GM (1,1) is the most accurate model selected in this study with the lowest average value of [Formula: see text]%. So, the GM (1,1) model is strongly suggested in the analysis of coffee consumption demand in Vietnam. Finding the right tool will help managers make right decisions easily for sustainable development of the coffee industry in Vietnam in the future.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888822500129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting the domestic coffee consumption demand is important for policy planning and making the right decisions. Thus, in this study, we try to find out the most suitable model among three proposed models (GM (1,1), DGM (1,1) and Grey Verhulst model (GVM)) for predicting the amount of domestic coffee consumption in Vietnam in the future. Yearly data of coffee consumption from 2010–2020 are used in this research. The experimental results indicated that the GM (1,1) is the most accurate model selected in this study with the lowest average value of [Formula: see text]%. So, the GM (1,1) model is strongly suggested in the analysis of coffee consumption demand in Vietnam. Finding the right tool will help managers make right decisions easily for sustainable development of the coffee industry in Vietnam in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰色预测模型的越南咖啡消费需求预测
预测国内咖啡消费需求对政策规划和正确决策具有重要意义。因此,在本研究中,我们试图从三个模型(GM (1,1), DGM(1,1)和Grey Verhulst模型(GVM))中找出最适合预测越南未来国内咖啡消费量的模型。本研究使用的是2010-2020年咖啡消费量的年度数据。实验结果表明,本文选取的GM(1,1)模型精度最高,[公式:见文]%的平均值最低。因此,GM(1,1)模型被强烈推荐用于越南咖啡消费需求分析。找到合适的工具将有助于管理者做出正确的决策,为越南咖啡行业在未来的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1