Text to phoneme alignment and mapping for speech technology: A neural networks approach

J. Bullinaria
{"title":"Text to phoneme alignment and mapping for speech technology: A neural networks approach","authors":"J. Bullinaria","doi":"10.1109/IJCNN.2011.6033279","DOIUrl":null,"url":null,"abstract":"A common problem in speech technology is the alignment of representations of text and phonemes, and the learning of a mapping between them that generalizes well to unseen inputs. The state-of-the-art technology appears to be symbolic rule-based systems, which is surprising given the number of neural network systems for text to phoneme mapping that have been developed over the years. This paper explores why that may be the case, and demonstrates that it is possible for neural networks to simultaneously perform text to phoneme alignment and mapping with performance levels at least comparable to the best existing systems.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"517 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A common problem in speech technology is the alignment of representations of text and phonemes, and the learning of a mapping between them that generalizes well to unseen inputs. The state-of-the-art technology appears to be symbolic rule-based systems, which is surprising given the number of neural network systems for text to phoneme mapping that have been developed over the years. This paper explores why that may be the case, and demonstrates that it is possible for neural networks to simultaneously perform text to phoneme alignment and mapping with performance levels at least comparable to the best existing systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音技术的文本到音素对齐和映射:一种神经网络方法
语音技术中的一个常见问题是文本和音素表示的对齐,以及它们之间映射的学习,这种映射可以很好地推广到看不见的输入。最先进的技术似乎是基于符号规则的系统,考虑到多年来开发的用于文本到音素映射的神经网络系统的数量,这一点令人惊讶。本文探讨了为什么会出现这种情况,并证明了神经网络可以同时执行文本到音素的对齐和映射,其性能水平至少可以与现有最好的系统相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1