Nonnegative Matrix Factorization using Class Label Information

Isiuwa Kokoye, Lawrence Oke, Padonou Izogie
{"title":"Nonnegative Matrix Factorization using Class Label Information","authors":"Isiuwa Kokoye, Lawrence Oke, Padonou Izogie","doi":"10.1109/FSKD.2013.6816258","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) has been a powerful tool for finding out parts-based, linear representations of nonnegative data samples. Nevertheless, NMF is an unsupervised algorithm, and it is not able to utilize the class label information. In this paper, the Nonnegative Matrix Factorization using Class Label Information (NMF-CLI) is proposed. It combines the class label information for factorization constraints. The proposed NMF-CLI method is investigated with one cost function and the corresponding update rules are given. Experiment results show the power of the proposed novel algorithm, by comparing to the state-of-the-art methods.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonnegative matrix factorization (NMF) has been a powerful tool for finding out parts-based, linear representations of nonnegative data samples. Nevertheless, NMF is an unsupervised algorithm, and it is not able to utilize the class label information. In this paper, the Nonnegative Matrix Factorization using Class Label Information (NMF-CLI) is proposed. It combines the class label information for factorization constraints. The proposed NMF-CLI method is investigated with one cost function and the corresponding update rules are given. Experiment results show the power of the proposed novel algorithm, by comparing to the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用类标签信息的非负矩阵分解
非负矩阵分解(NMF)已经成为寻找非负数据样本的基于部分的线性表示的有力工具。然而,NMF是一种无监督算法,它不能利用类标签信息。本文提出了一种基于类标签信息的非负矩阵分解方法。它结合了分解约束的类标签信息。研究了单代价函数的NMF-CLI方法,并给出了相应的更新规则。实验结果表明了该算法的有效性,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised clustering with the Octave Fuzzy Logic Toolkit Application of adaptive neuro-fuzzy inference system for physical habitat simulation Fuzzy equivalence relation clustering with transitive closure, transitive opening and the optimal transitive approximation A local domain adaptation feature extraction method A real-time algorithm for fixed-length short data compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1