Comparison of Loss functions and Optimizers for Multi-class X-ray Bone Segmentation

T. Anwar, Seemab Zakir
{"title":"Comparison of Loss functions and Optimizers for Multi-class X-ray Bone Segmentation","authors":"T. Anwar, Seemab Zakir","doi":"10.1109/ICAI55435.2022.9773572","DOIUrl":null,"url":null,"abstract":"X-ray bone segmentation helps orthopaedic surgeons make proper decisions by separating bones from soft tissues and making the view clear. Segmenting the bones help them to analyze if the bones are in place. UNet architectures are widely used for segmentation tasks. Selecting optimal configuration help in better segmentation of bones. This paper compared different optimizers and loss functions while studying pelvic and femur bone segmentation from X-ray images. Overall, AdamW optimizers yield better performance with different loss functions than all other optimizers, including the commonly used Adam. Tversky loss shows good stable results across different optimizers in terms of the loss function. Best dice similarity coefficient and intersection over union score of 97.04 % and 96.56 % are achieved using AdamW and dice loss.","PeriodicalId":146842,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence (ICAI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI55435.2022.9773572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray bone segmentation helps orthopaedic surgeons make proper decisions by separating bones from soft tissues and making the view clear. Segmenting the bones help them to analyze if the bones are in place. UNet architectures are widely used for segmentation tasks. Selecting optimal configuration help in better segmentation of bones. This paper compared different optimizers and loss functions while studying pelvic and femur bone segmentation from X-ray images. Overall, AdamW optimizers yield better performance with different loss functions than all other optimizers, including the commonly used Adam. Tversky loss shows good stable results across different optimizers in terms of the loss function. Best dice similarity coefficient and intersection over union score of 97.04 % and 96.56 % are achieved using AdamW and dice loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类x线骨分割的损失函数与优化器的比较
x射线骨骼分割通过将骨骼与软组织分离并使视野清晰,帮助骨科医生做出正确的决定。对骨头进行分割可以帮助他们分析骨头是否在原位。UNet架构被广泛用于分割任务。选择最佳结构有助于更好地分割骨骼。本文在研究骨盆和股骨x线图像分割时,比较了不同的优化器和损失函数。总的来说,与所有其他优化器(包括常用的Adam)相比,AdamW优化器在使用不同损失函数时产生更好的性能。就损失函数而言,Tversky损失在不同的优化器中显示出良好的稳定结果。使用AdamW和骰子损失,获得了最佳的骰子相似系数97.04%和96.56%的交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LSTM-based Model for Forecasting of COVID-19 Vaccines in Pakistan Adaptive Neural-Sliding Mode Control of a Quadrotor Vehicle with Uncertainties and Disturbances Compensation A Force Myography based HMI for Classification of Upper Extremity Gestures Evolving computationally efficient prediction model for Stock Volatility using CGPANN A Review on Different Approaches for Assessing Student Attentiveness in Classroom using Behavioural Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1