Preprocessing in Fuzzy Time Series to Improve the Forecasting Accuracy

F. J. J. Santos, H. Camargo
{"title":"Preprocessing in Fuzzy Time Series to Improve the Forecasting Accuracy","authors":"F. J. J. Santos, H. Camargo","doi":"10.1109/ICMLA.2013.185","DOIUrl":null,"url":null,"abstract":"The preprocessing in fuzzy time series has an important role to improve the forecast accuracy. The definitions of domain, number of linguistic terms and of the membership function to each fuzzy set, has direct influence in the forecast results. Thus, this paper has the focus on definition of these parameters, before of performing the prediction. The experimental results in enrollments time series show that, when the forecast is performed after proposed preprocessing, the accuracy rate is improved.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The preprocessing in fuzzy time series has an important role to improve the forecast accuracy. The definitions of domain, number of linguistic terms and of the membership function to each fuzzy set, has direct influence in the forecast results. Thus, this paper has the focus on definition of these parameters, before of performing the prediction. The experimental results in enrollments time series show that, when the forecast is performed after proposed preprocessing, the accuracy rate is improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊时间序列预处理提高预测精度
模糊时间序列的预处理对提高预测精度具有重要作用。领域的定义、语言项的数量以及每个模糊集的隶属函数的定义直接影响预测结果。因此,本文在进行预测之前,重点关注这些参数的定义。在招生时间序列上的实验结果表明,经过本文提出的预处理后进行预测,准确率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Categorical Information for Enhanced Probabilistic Trajectory Prediction Technical Verification of Integrating Wearable Sensors into BSN-Based Telemedical Monitoring System Blood Glucose Level Prediction Using Physiological Models and Support Vector Regression Evolutionary Content Pre-fetching in Mobile Networks Improving the Transcription of Academic Lectures for Information Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1