Binary classification with noise via fuzzy weighted least squares twin support vector machine

Juntao Li, Yimin Cao, Yadi Wang, Xiaoxia Mu, Liuyuan Chen, Huimin Xiao
{"title":"Binary classification with noise via fuzzy weighted least squares twin support vector machine","authors":"Juntao Li, Yimin Cao, Yadi Wang, Xiaoxia Mu, Liuyuan Chen, Huimin Xiao","doi":"10.1109/CCDC.2015.7162214","DOIUrl":null,"url":null,"abstract":"A new weighted least squares twin support vector machine for binary classification with noise is proposed in this paper. By using the distances from the sample points to their class center, fuzzy weights are constructed. The fuzzy weighted least squares twin support vector machine is presented by following the fuzzy weighted mechanism, thus reducing the influence of the noise. The simulation results on three UCI data and two-moons data demonstrate the effectiveness of the proposed method.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new weighted least squares twin support vector machine for binary classification with noise is proposed in this paper. By using the distances from the sample points to their class center, fuzzy weights are constructed. The fuzzy weighted least squares twin support vector machine is presented by following the fuzzy weighted mechanism, thus reducing the influence of the noise. The simulation results on three UCI data and two-moons data demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊加权最小二乘双支持向量机的噪声二值分类
提出了一种新的加权最小二乘双支持向量机用于带噪声的二值分类。利用样本点到类中心的距离,构造模糊权值。遵循模糊加权机制,提出了模糊加权最小二乘双支持向量机,从而降低了噪声的影响。在三个UCI数据和两个卫星数据上的仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application and design of attack and defense algorithms in WTN chess of computer games Research on calculating method of hidden layer nodes in BP network An improved GAFSA with adaptive step chaotic search The research on flywheel acceleration assessment with null motion escaping singularity for variable speed control moment gyros A multiple sub-models self-tuning control algorithm of non-uniformly sampled systems based on auxiliary-variable-model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1