Automatic vessel wall segmentation of IVOCT images using region detection EREL algorithm

Niyoosha Dallalazar, A. Ayatollahi, M. Habibi, A. Kermani
{"title":"Automatic vessel wall segmentation of IVOCT images using region detection EREL algorithm","authors":"Niyoosha Dallalazar, A. Ayatollahi, M. Habibi, A. Kermani","doi":"10.1109/KBEI.2019.8734974","DOIUrl":null,"url":null,"abstract":"Intravascular optical coherence tomography IVOCT is a catheter-based imaging modality that uses near-infrared light, to produce high-resolution cross-sectional images of the vessel wall. Segmentation of the vessel wall is important to indicate stenosis and analyze atherosclerotic plaques. In this study we use the recently proposed region detector, named Extremal Region of Extremum Level (EREL), to detect the lumen and media contours in IVOCT frames, and then we used a region selection method to detect the most precise lumen and media contours from the extracted ERELs. We evaluated the proposed method on the dataset containing 142 IVOCT images. We get, the average Hausdorff Distances (HD) and Dice metric (DSC) between the extracted ERELs and the lumen and media contours, 0.045 mm, 0.141 mm and 0.986, 0.96, respectively. The results of our study showed that the IVOCT image segmentation using the proposed method is more robust and more precise than state-of-the-art.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8734974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intravascular optical coherence tomography IVOCT is a catheter-based imaging modality that uses near-infrared light, to produce high-resolution cross-sectional images of the vessel wall. Segmentation of the vessel wall is important to indicate stenosis and analyze atherosclerotic plaques. In this study we use the recently proposed region detector, named Extremal Region of Extremum Level (EREL), to detect the lumen and media contours in IVOCT frames, and then we used a region selection method to detect the most precise lumen and media contours from the extracted ERELs. We evaluated the proposed method on the dataset containing 142 IVOCT images. We get, the average Hausdorff Distances (HD) and Dice metric (DSC) between the extracted ERELs and the lumen and media contours, 0.045 mm, 0.141 mm and 0.986, 0.96, respectively. The results of our study showed that the IVOCT image segmentation using the proposed method is more robust and more precise than state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域检测EREL算法的IVOCT图像血管壁自动分割
血管内光学相干断层扫描(IVOCT)是一种基于导管的成像方式,使用近红外光产生血管壁的高分辨率横截面图像。血管壁的分割对于显示狭窄和分析动脉粥样硬化斑块很重要。在本研究中,我们使用最近提出的区域检测器——极值水平的极值区域(extreme region of Extremum Level, EREL)来检测IVOCT帧中的腔体和介质轮廓,然后我们使用区域选择方法从提取的EREL中检测出最精确的腔体和介质轮廓。我们在包含142张IVOCT图像的数据集上评估了所提出的方法。我们得到的平均Hausdorff距离(HD)和Dice度量(DSC)在提取的ERELs与腔体和介质轮廓之间分别为0.045 mm, 0.141 mm和0.986,0.96。研究结果表明,使用该方法进行的IVOCT图像分割比现有方法具有更强的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Profitability Prediction for ATM Transactions Using Artificial Neural Networks: A Data-Driven Analysis Fabrication of UV detector by Schottky Pd/ZnO/Si Contacts Hybrid of genetic algorithm and krill herd for software clustering problem Development of a Hybrid Bayesian Network Model for Hydraulic Simulation of Agricultural Water Distribution and Delivery Using SIFT Descriptors for Face Recognition Based on Neural Network and Kepenekci Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1