Defining Similarity Spaces for Large-Scale Image Retrieval Through Scientific Workflows

Luis Fernando Milano Oliveira, D. S. Kaster
{"title":"Defining Similarity Spaces for Large-Scale Image Retrieval Through Scientific Workflows","authors":"Luis Fernando Milano Oliveira, D. S. Kaster","doi":"10.1145/3105831.3105863","DOIUrl":null,"url":null,"abstract":"Content-Based Image Retrieval (CBIR) employs visual features from images for searching and retrieving of data. Systems based on this concept depend on a similarity space instance definition, but achieving an ideal instance is a very complex process and is dependent on domain knowledge. At the same time, domain experts are often unable to interact fully with systems because of technicalities. In this paper, we propose an architecture, based on scientific workflows, which allows users with no prior programming experience to build processes on images, creating Similarity Spaces and evaluating them when running similarity queries. Through this architecture, they can use domain expertise to improve image retrieval in a coordinated, auditable and reproducible manner, while being able to process very large image collections. We describe a prototype system and carry out experiments evaluating its performance in various scenarios. The current implementation supports both similarity space definition and querying workflows, achieving suitable speedups with the increase in the number of machines.","PeriodicalId":319729,"journal":{"name":"Proceedings of the 21st International Database Engineering & Applications Symposium","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3105831.3105863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Content-Based Image Retrieval (CBIR) employs visual features from images for searching and retrieving of data. Systems based on this concept depend on a similarity space instance definition, but achieving an ideal instance is a very complex process and is dependent on domain knowledge. At the same time, domain experts are often unable to interact fully with systems because of technicalities. In this paper, we propose an architecture, based on scientific workflows, which allows users with no prior programming experience to build processes on images, creating Similarity Spaces and evaluating them when running similarity queries. Through this architecture, they can use domain expertise to improve image retrieval in a coordinated, auditable and reproducible manner, while being able to process very large image collections. We describe a prototype system and carry out experiments evaluating its performance in various scenarios. The current implementation supports both similarity space definition and querying workflows, achieving suitable speedups with the increase in the number of machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过科学工作流定义大规模图像检索的相似空间
基于内容的图像检索(CBIR)利用图像的视觉特征对数据进行搜索和检索。基于这一概念的系统依赖于相似空间实例定义,但获得理想实例是一个非常复杂的过程,并且依赖于领域知识。与此同时,由于技术问题,领域专家常常无法与系统进行充分的交互。在本文中,我们提出了一种基于科学工作流的架构,该架构允许没有编程经验的用户在图像上构建过程,创建相似空间并在运行相似查询时评估它们。通过这种体系结构,他们可以使用领域专业知识以协调、可审计和可复制的方式改进图像检索,同时能够处理非常大的图像集合。我们描述了一个原型系统,并进行了实验,评估其在各种场景下的性能。当前的实现支持相似空间定义和查询工作流,随着机器数量的增加实现适当的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LoRaWAN Bristol Towards Reliable Data Analyses for Smart Cities A Differentially Private Approach for Querying RDF Data of Social Networks DiPCoDing: A Differentially Private Approach for Correlated Data with Clustering Using a Model-driven Approach in Building a Provenance Framework for Tracking Policy-making Processes in Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1